Number Partitioning

Suppose you have a set of N integers, $A=\left\{a_{1}, \ldots, a_{N}\right\}$, with $1 \leq a_{i} \leq 2^{M}$ (i.e., each integer can be stored in M bits). Pick a subset $B \subseteq A$, and define the energy of the resulting partition of $B \cup(A \backslash B)$ as

$$
E(B)=\left|\sum_{a_{i} \in B} a_{i}-\sum_{a_{i} \in A \backslash B} a_{i}\right| .
$$

A basic type of algorithm is called a decision algorithm: does there exist a partition B^{*} such that $E\left(B^{*}\right)=0$ (such a partition is called perfect)? Note that this means that we have found a partition such that the sum of the integers in each half is the same.

Let's assume that $N \gg 1$ and $M \gg 1$, and that the elements of A are i.i.d. random variables uniformly distributed on $\left\{1, \ldots, 2^{M}\right\}$. For computer science, this would be a reasonable assumption: data is typically well-approximated as random. ${ }^{1}$ The idea here is to treat the problem's "energy" cost as a physical energy, and compute the partition function $Z(\beta)$ for this system. One can think of β as a tolerance level for imperfect partitions; thus, to answer the decision problem, one would set $\beta=\infty$ (i.e., no tolerance).
(a) Show that the exact expression for $Z,{ }^{2}$ averaged over all possible realizations of the random variables a_{i}, is

$$
\langle Z(\beta)\rangle=2^{N} \int_{-\pi}^{\pi} \frac{\mathrm{d} x}{2 \pi} g(x)^{N}\left(1+2 \sum_{n=1}^{\infty} \mathrm{e}^{-\beta n} \cos n x\right)
$$

where $g(x)$ is the function

$$
g(x)=\frac{\sin \left(2^{M} \frac{x}{2}\right)}{2^{M} \sin \frac{x}{2}} \cos \left(\left(2^{M}+1\right) \frac{x}{2}\right) .
$$

(b) The exact answer is not particularly illuminating, so let's go for an approximate one instead. Plot or sketch $g(x)$ on $[-\pi, \pi)$ for a reasonably large M.
(c) The sketch above should suggest that the integral can be very reasonably approximated by rescaling to the variable

$$
y \equiv \frac{x}{2^{M} \sqrt{N}} .
$$

Also, define

$$
\kappa \equiv \frac{M}{N} .
$$

Making this substitution, and any other reasonable approximations needed, show that to leading order in N and κ,

$$
\langle Z(\beta)\rangle=2^{N(1-\kappa)} \sqrt{\frac{3}{2 \pi N}} \operatorname{coth} \frac{\beta}{2}
$$

[^0](d) Are there "critical" values of N, κ, or β at which we expect to see crossovers/transitions between distinctive behaviors? Relate this to the original question of solving the decision problem.

Another type of algorithm asks you to actually find the partition. This is unfortunately a lot harder; in fact, this problem is NP-complete, and beyond the scope of this problem.

[^0]: ${ }^{1}$ Of course, we have no idea if our assumption of a uniform distribution is reasonable!
 ${ }^{2}$ Use the integral relation that, for $z \in \mathbb{Z}, \int_{-\pi}^{\pi} \frac{\mathrm{d} x}{2 \pi} \mathrm{e}^{\mathrm{i} x z}=\left\{\begin{array}{ll}1 & z=0 \\ 0 & \text { otherwise }\end{array}\right.$. Clever use of this relation will allow you to take advantage of the independence of the a_{i}.

