electromagnetism \rightarrow geometric optics

Holograms

Roughly speaking, photographic material is one where the transmittance is proportional to the intensity of light that shines upon it while it is developing: i.e.,

$$
t_{\text {photo }} \approx t_{0}+\alpha I+\cdots
$$

Obviously, this is only valid for a moderate period of time; afterwards, the photo is developed and is not changing. In this problem, we use the scalar wave approximation, and let $\psi^{*} \psi=I$.

Photographs, however, lose half of the information about the incident wave - the phase. A hologram is a slab of material which will record both the amplitude and the phase of an incident wave. ${ }^{1}$ This is done by a trick, which was Gabor's clever intuition: use a reference wave which will add to the incident wave, so that the total wave incident on the photographic medium is $\psi=\psi_{\text {obj }}+\psi_{\text {ref }}$. Typically, $\left|\psi_{\text {obj }}\right| \ll\left|\psi_{\text {ref }}\right|$.
(a) Write out an expression for $t_{\text {photo }}$, assuming a reference wave is present and taking into account the approximation.

A piece of photographic material is in the $z=0$ plane. Suppose that the incident wave is a spherical source originating from $\left(x_{\mathrm{o}}, y_{\mathrm{o}}, z_{\mathrm{o}}\right)$, and the reference wave is a spherical source originating from $\left(x_{\mathrm{r}}, y_{\mathrm{r}}, z_{\mathrm{r}}\right)$. The photographic sheet is allowed to develop and then a plane wave is incident on it, propagating in the positive z direction.
(b) Show that it will appear to an observer as if a plane wave is originating from a point $\left(x_{\mathrm{i}}, y_{\mathrm{i}}, z_{\mathrm{i}}\right)$. Find an expression for these three coordinates.
(c) Use the result of part (b) to find the magnification of an image along the x and y directions, $M_{x y}$, and along the z direction, M_{z}.

The key result of this problem is as follows - for a normal photograph, because I is real, the image will appear to originate from the $z=0$ plane - it will appear two-dimensional. But for a hologram, $z_{\mathrm{i}} \neq 0$, in general; the image will truly appear $3-\mathrm{D}$; only by capturing information about the phase of the wave can we observe this effect!

[^0]
[^0]: ${ }^{1}$ Holograms were invented by Dennis Gabor in 1948; he won the Nobel Prize in Physics in 1971 for this.

