electromagnetism \rightarrow nonlinear optics

Laser Beam Breakup

At extremely high intensities, many materials have intensity-dependent indices of refraction. Consider a material which has a nonlinear polarization of the form

$$\mathbf{P} = \epsilon_0 \alpha |\mathbf{E}|^2 \mathbf{E}.$$

Thus as $\mathbf{E} \to \mathbf{0}$, the material acts like the vacuum.

In this problem, let us assume all waves are polarized in the x direction, and have amplitudes given by

$$E_0 = A_0(z)\mathrm{e}^{\mathrm{i}k(z-ct)} + \mathrm{c.c.},$$

with $|\mathrm{d}E_0/\mathrm{d}z| \ll |kE_0|$.

(a) Show that the wave equation approximately reduces to

$$\nabla_{\perp}^2 E + 2\mathrm{i}k\frac{\partial E}{\partial z} = -\alpha k^2 |E|^2 E.$$

Now, let us make the following ansatz:

$$E - E_0 = e^{ik(z-ct)} \left[A_+(z)e^{i\mathbf{q}\cdot\mathbf{x}} + A_-(z)e^{-i\mathbf{q}\cdot\mathbf{x}} \right] + c.c.$$

Here $\mathbf{q} \cdot \hat{\mathbf{z}} = 0$, and we assume that $A_+, A_- \ll A_0$.

- (b) Solve for $A_0(z)$, neglecting the A_{\pm} terms, and assuming the boundary condition $A_0(0) = a_0$.
- (c) Now, linearizing the nonlinear wave equation, find a matrix equation for $\partial_z A_+$ and $\partial_z \overline{A}_-$.
- (d) Show that the solutions to the matrix equation above are proportional to $e^{\lambda z}$, and find an expression for λ .
- (e) Show that when $a_0 > a_c$, there is an instability. Sketch $\operatorname{Re}(\lambda)$ vs. q for these cases.

When this happens, typically the laser beam will fragment into many smaller laser beams, each of which have amplitude of about a_0 .