Aberrations in Optical Systems

Often times when constructing an optical system, we are faced with the reality that the imaging is imperfect due to the presence of *aberrations* in the pupil. An aberration does not cause the pupil to obtain a distorted shape; instead, it causes the ray passing through each point on the pupil to be distorted by a different phase. Thus, we can account for aberrations by letting our transmittance be

$$t(\mathbf{x}) = P(\mathbf{x}) e^{ikW(\mathbf{x})}$$

where $W(\mathbf{x})$ is a function which accounts for the aberrations and $P(\mathbf{x})$ is the unaberrated pupil function. Let z be the distance to the image plane of the optical system and k be the wave number of the incoherent light.

(a) Let \mathcal{H}_0 be the OTF of the pupil with transmittance $P(\mathbf{x})$, and \mathcal{H}' be the OTF of the pupil with transmittance $t(\mathbf{x})$ defined above (with aberrations). Show that

$$\mathcal{H}'(\mathbf{q}) = \frac{\iint\limits_{A(\mathbf{q})} e^{ik[W(\mathbf{x}+z\mathbf{q}/2k)-W(\mathbf{x}-z\mathbf{q}/2k)]} d^2\mathbf{x}}{\iint\limits_{A(\mathbf{0})} d^2\mathbf{x}}$$

Recall that $A(\mathbf{q})$ corresponds to the overlap area between $P(\mathbf{x} + \lambda z \mathbf{q}/2)$ and $P(\mathbf{x} - \lambda z \mathbf{q}/2)$.

(b) Show that $|\mathcal{H}'| \leq |\mathcal{H}_0|$: i.e., aberrations can never increase the resolution at a spatial frequency.

A square aperture of width b serves as the exit pupil of an optical system whose image plane is located a distance $z + \zeta$ away from the exit pupil (remember, the imaging is done at z). This aberration is therefore a simple focusing error (e.g., someone put in a lens of the wrong focal length!).

(c) By writing down the function $W(\mathbf{x})$ exactly, show that if

$$\eta = kb^2 \left(\frac{1}{z} - \frac{1}{z+\zeta}\right),$$
$$\mathcal{H}'(\mathbf{q}) = \mathcal{H}_0(\mathbf{q}) \cdot \mathbf{j}_0 \left(\eta \frac{|q_x|}{2q_0} \left(1 - \frac{|q_x|}{2q_0}\right)\right) \mathbf{j}_0 \left(\eta \frac{|q_y|}{2q_0} \left(1 - \frac{|q_y|}{2q_0}\right)\right)$$

where $q_0 = kb/2z$.

- (d) Let $q_y = 0$. Plot \mathcal{H}' vs. q_x for $\eta = 0$, 0.25, 0.5, 1. What is the critical value of η , η_c , for which \mathcal{H}' can take on *negative* values?
- (e) If $\mathcal{H}'(\mathbf{q}) < 0$, areas of high intensity become areas of low intensity and vice versa. Can you give an explanation for this?