electromagnetism \rightarrow electromagnetic waves

Transfer Matrices in Optics

In a real world analysis of a complex optical system, one of the most useful tricks is the introduction of a transfer matrix. In this problem, we'll see how to construct and use transfer matrices for normally incident electromagnetic waves in a large optical system.

Suppose we have an optical system which is translationally invariant in the y and z directions. We can write the electric field of a normally incident plane wave therefore

$$
E=E_{+} \mathrm{e}^{\mathrm{i} n \omega x / c}+E_{-} \mathrm{e}^{-\mathrm{i} n \omega x / c} .
$$

The polarization of the wave does not concern us. Suppose that at some initial state, therefore, our electric field is described by the vector $\left(E_{+1}, E_{-1}\right)$, and at some later time by the vector $\left(E_{+2}, E_{-2}\right)$. (The vector refers to whether the wave is moving forwards/backwards, not the vector nature of \mathbf{E}). If our system is linear, we then construct a 2×2 matrix T such that

$$
\binom{E_{+2}}{E_{-2}}=T\binom{E_{+1}}{E_{-1}}
$$

T is called a transfer matrix. To start off, let's calculate some sample transfer matrices.
(a) Let $P(n ; x)$ be the matrix representing propagation through a medium of index of refraction n for a distance x. Show that ${ }^{1}$

$$
P(n ; x)=\cos \frac{n \omega x}{c}+\mathrm{i} \sin \frac{n \omega x}{c} \sigma_{3} .
$$

(b) Let $B\left(n_{1} \rightarrow n_{2}\right)$ be the matrix representing a wave propagating from a medium of index $n_{1}\left(x<x_{0}\right)$ to a medium with index $n_{2}\left(x>x_{0}\right)$. Show that

$$
B\left(n_{1} \rightarrow n_{2}\right)=\frac{1+n_{1} / n_{2}}{2}+\frac{1-n_{1} / n_{2}}{2} \sigma_{1} .
$$

Now suppose we are considering a stack of N thin films of index of refraction n, each with thickness b. The films are separated by air $(n=1)$ of thickness a. The transfer matrix formalism is ideal to analyze this problem in a nearly-exact manner.

(c) Let $\alpha=\omega a / c$ and $\beta=n \omega b / c$; let U be the transfer matrix for one unit of the thin film stack (as shown in the figure). Show that

$$
\begin{aligned}
U= & \frac{1}{4 n}\left[\left((n+1)^{2} \cos (\alpha+\beta)-(n-1)^{2} \cos (\alpha-\beta)\right)\right. \\
& +2\left(n^{2}-1\right) \sin \beta \sin \alpha \sigma_{1}-2\left(n^{2}-1\right) \sin \beta \cos \alpha \sigma_{2} \\
& \left.+\left((n+1)^{2} \sin (\alpha+\beta)-(n-1)^{2} \sin (\alpha-\beta)\right) \mathrm{i} \sigma_{3}\right] .
\end{aligned}
$$

[^0](d) If we build a stack such that $\alpha=\beta=\pi / 2$, compute T and show that
$$
\frac{I_{\mathrm{trans}}}{I_{\mathrm{inc}}}=\frac{4}{\left(1+\frac{1}{n^{2}}\right)^{N}}
$$

Comment on this result, and on its possible usefulness in an application.

[^0]: ${ }^{1} \sigma_{i}$ represents a Pauli spin matrix in this problem (think back to quantum mechanics for their properties).

