Transition Radiation

A charge q moves at constant velocity $\mathbf{v}=v \hat{\mathbf{x}}$ from a vacuum $(x<0)$ into a linear dielectric $(x>0)$ with index of refraction $n=\sqrt{\epsilon / \epsilon_{0}}$, which you can assume is real. Assume that $v<c / n$.

(a) Assume that at time $t=0$, the charge is at $x=y=z=0$. Fourier transform Maxwell's equations in the y, z and t directions, and show that the electric field \mathbf{E}_{s} generated by the moving source, ignoring the presence of the boundary, is given by

$$
\mathbf{E}_{\mathrm{s}}\left(x, k_{y}, k_{z}, \omega\right)=\frac{\mathrm{i} q}{\epsilon_{0} n^{2} v} \frac{\omega v\left(\frac{n^{2}}{c^{2}}-\frac{1}{v^{2}}\right) \hat{\mathbf{x}}-\mathbf{k}}{k^{2}-\omega^{2}\left(\frac{n^{2}}{c^{2}}-\frac{1}{\omega^{2}}\right)} \mathrm{e}^{\mathrm{i} \omega x / v}
$$

In this equation, take n^{2} to be a function of x.
(b) As you may have noticed, the above does not quite solve Maxwell's equations, because of the boundary at $x=0$, where the abrupt change in n will cause \mathbf{E}_{s} to be discontinuous. We can remedy this by writing the true electric field as $\mathbf{E}=\mathbf{E}_{\mathrm{s}}+\mathbf{E}_{\mathrm{r}}$, where \mathbf{E}_{r} is a radiation field, added to satisfy the boundary conditions. Show, on general principles, that the form of \mathbf{E}_{r} must be

$$
\mathbf{E}_{\mathrm{r}}=\left(x, k_{y}, k_{z}, \omega\right)=\mathrm{i} A_{ \pm}(\mathbf{k}, \omega)\left[\hat{\mathbf{x}} \mp \frac{\mathbf{k}}{k^{2}} \sqrt{\frac{n^{2} \omega^{2}}{c^{2}}-k^{2}}\right] \mathrm{e}^{ \pm \mathrm{i} x \sqrt{n^{2} \omega^{2} / c^{2}-k^{2}}}
$$

where the top sign is used for $x>0$, and the bottom sign for $x<0$.
(c) The boundary condition at $x=0$ provides equations which can be solved to find $A_{ \pm}$. Write down these equations, but do not solve them.

If you did the nasty algebra, you would find

$$
A_{-}=\frac{q \beta \kappa^{2}\left(n^{2}-1\right)\left(1-\beta^{2}+\beta \sqrt{n^{2}-\kappa^{2}}\right)}{\omega\left(1-\beta^{2}+\beta^{2} \kappa^{2}\right)\left(1+\beta \sqrt{n^{2}-\kappa^{2}}\right)\left(\sqrt{n^{2}-\kappa^{2}}+n^{2} \sqrt{1-\kappa^{2}}\right)}
$$

where $\beta \equiv v / c$ and $\kappa \equiv k c / \omega$.
For the remainder of the problem, our goal will be to compute the energy W radiated by this particle as it moves across the boundary, in the limit of $t \rightarrow \infty$. This is the so called transition radiation. To
do this, we begin with the formula (note that the factor of 2 comes from the contribution of the magnetic field):

$$
W=\int_{x<0} \mathrm{~d} V \epsilon_{0} \mathbf{E}_{\mathrm{r}} \cdot \overline{\mathbf{E}_{\mathrm{r}}} .
$$

This is basically because in the large time limit, only the radiation field is present at $x<0$. You do not need to justify this statement, although it is not difficult.
(d) Begin by showing that

$$
W=\int \mathrm{d}^{2} \mathbf{k} d \omega \frac{\epsilon_{0}}{(2 \pi)^{4}} \frac{\omega^{2}}{c k^{2}} \sqrt{1-\frac{c^{2} k^{2}}{\omega^{2}}}\left|A_{-}\right|^{2} .
$$

(e) Now justify, the following statement: the only relevant integral is over momenta such that $c k \leq \omega$. Switching variables to

$$
\sin \theta \equiv \frac{c k}{\omega}
$$

re-write the integral for W as an integral only over θ and ω.
(f) Work in the limit where $n \approx 1$ and $v \approx c$. Show that, in this limit, we can approximate

$$
W \sim\left(\frac{n-1}{n+1}\right)^{2} \log \frac{1}{1-v^{2} / c^{2}} .
$$

Comment on the result. How much of the particle's energy (relatively) is lost to transition radiation as it crosses the boundary, as the particle becomes more energetic?

