
electromagnetism → electromagnetic radiation FFFFF

Transition Radiation

A charge q moves at constant velocity v = vx̂ from a vacuum (x < 0) into a linear dielectric (x > 0) with
index of refraction n =

√
ε/ε0, which you can assume is real. Assume that v < c/n.
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(a) Assume that at time t = 0, the charge is at x = y = z = 0. Fourier transform Maxwell’s equations in
the y, z and t directions, and show that the electric field Es generated by the moving source, ignoring
the presence of the boundary, is given by
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In this equation, take n2 to be a function of x.

(b) As you may have noticed, the above does not quite solve Maxwell’s equations, because of the boundary
at x = 0, where the abrupt change in n will cause Es to be discontinuous. We can remedy this by
writing the true electric field as E = Es + Er, where Er is a radiation field, added to satisfy the
boundary conditions. Show, on general principles, that the form of Er must be

Er = (x, ky, kz, ω) = iA±(k, ω)
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where the top sign is used for x > 0, and the bottom sign for x < 0.

(c) The boundary condition at x = 0 provides equations which can be solved to find A±. Write down
these equations, but do not solve them.

If you did the nasty algebra, you would find
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where β ≡ v/c and κ ≡ kc/ω.
For the remainder of the problem, our goal will be to compute the energy W radiated by this particle

as it moves across the boundary, in the limit of t →∞. This is the so called transition radiation. To



do this, we begin with the formula (note that the factor of 2 comes from the contribution of the magnetic
field):

W =
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dV ε0Er ·Er.

This is basically because in the large time limit, only the radiation field is present at x < 0. You do not
need to justify this statement, although it is not difficult.

(d) Begin by showing that
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(e) Now justify, the following statement: the only relevant integral is over momenta such that ck ≤ ω.
Switching variables to

sin θ ≡ ck

ω
,

re-write the integral for W as an integral only over θ and ω.

(f) Work in the limit where n ≈ 1 and v ≈ c. Show that, in this limit, we can approximate
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Comment on the result. How much of the particle’s energy (relatively) is lost to transition radiation
as it crosses the boundary, as the particle becomes more energetic?


