Gaussian Beams

The basic theory of electromagnetic radiation suggests that if a point source creates electromagnetic radiation, it very rapidly attenuates: the intensity of the beam falls off as r^{-2}. This is certainly true, so how do we make a laser beam, which can appear so focused?

The answer is to use a Gaussian beam. This problem will guide you through understanding how Gaussian beams are proper solutions to the wave equation (in a special limit) with very interesting properties. For simplicity, we may consider the geometrc optic limit, and consider a scalar wave $\psi(x, y, z, t)$ propagating as

$$
\psi(x, y, z, t)=A(x, y, z) \mathrm{e}^{\mathrm{i} k(z-c t)} .
$$

Suppose that

$$
k \gg \frac{\partial A}{\partial z}
$$

(a) Show that approximately,

$$
0=\frac{\partial^{2} A}{\partial x^{2}}+\frac{\partial^{2} A}{\partial y^{2}}+2 \mathrm{i} k \frac{\partial A}{\partial z} .
$$

This is called the paraxial Helmholtz equation.
(b) Let $r^{2}=x^{2}+y^{2}$. Verify that the paraxial Helmholtz equation is satisfied by

$$
A=\frac{C}{q(z)} \mathrm{e}^{\mathrm{i} k r^{2} / 2 q(z)}
$$

for any constant C and function $q(z)=z+\alpha$, for any complex constant α.
(c) Show that writing $q(z)$ in the form

$$
\frac{1}{q(z)}=\frac{1}{R(z)}+\frac{\mathrm{i}}{2 k W(z)^{2}}
$$

where $R(z)$ and $W(z)$ are real functions results in

$$
A=A_{0} \frac{W_{0}}{W(z)} \mathrm{e}^{-r^{2} / 4 W(z)^{2}} \mathrm{e}^{\mathrm{i} k r^{2} / 2 R} \mathrm{e}^{\mathrm{i} \zeta(z)}
$$

where $\zeta(z)$ is a specific function, and A_{0} and W_{0} are constants. The name Gaussian beam should now be pretty clear!
(d) Show that $W(z)$ has one minimum: we may use translation symmetry to fix this minimum at $z=0$. Then show that

$$
W(z)=W_{0} \sqrt{1+\left(\frac{z}{z_{0}}\right)^{2}}
$$

and find an expression for W_{0} in terms of k and z_{0}. Explain why z_{0} is a free parameter of the problem.
(e) For $z \gg z_{0}$, explain why the Gaussian beam looks like a beam propagating outwards at some angle θ with respect to the z-axis, and find an expression for θ. Explain how we can make θ as small as we want. This corresponds to making a laser beam which stays very focused.

