Electrostatics in a Compactified Space

Consider electrodynamics in a 4 dimensional space. You can still assume that Gauss' Law holds, and that the electric field $\mathbf{E} = -\nabla \varphi$ can be written as the gradient of a potential.

(a) Consider a point charge of strength q_4 at the origin. Determine the electric potential $\varphi_4(r_4)$, where r_4 is the distance in 4D space from the point charge.¹

In string theory, one of the fundamental ideas is that there may be extra dimensions to our universe. However, these extra dimensions are *compactified*, which means that the extra dimensions are only noticeable on very short length scales. Let us give a quantitative example of compactification. Let us denote the 4 directions of our 4D space by (x, y, z, w). To compactify the fourth dimension w, we demand that our electrostatic solution φ is periodic in w: $\varphi(w) = \varphi(w + 2\pi a)$. The physical interpretation of this is that the fourth dimension is in fact rolled up, or compactified, into a circle of radius a.

- (b) Compactify the 4D space as described above onto a circle of radius a. Determine the new potential φ₃(x, y, z) ≡ φ₄(x, y, z, 0), using the φ₄ you found earlier, but requiring consistency in compactification.²
- (c) Show that when $r_3 \gg a$,

$$\varphi_3(r_3) \approx \frac{q_3}{4\pi r_3},$$

and relate q_3 , the effective strength of the point charge in 3D space, to q_4 . Comment on this result.

²Think about placing image charges so that the solution is consistent on the compactified space: i.e., is periodic in w with periodic $2\pi a$. To determine the exact form of φ_3 , the following sum is helpful: $\sum_{n=-\infty}^{\infty} \frac{1}{1+(n\pi x)^2} = \frac{1}{x} \coth \frac{1}{x}$.

¹To do this, it is easiest to use the integral form of Gauss' Law, which holds in an arbitrary number of dimensions. Also note that for a potential $\varphi(r)$ in any number of dimensions, the electric field is purely radial and has magnitude given by $-\partial \varphi/\partial r$. Note that the surface area of a 3-sphere of radius R is $2\pi R^2$.