quantum field theory \rightarrow information in quantum field theory

Entanglement Entropy of Free Fermions

Consider a Hamiltonian of free fermions on sites labeled i = 1, ..., N, with arbitrary hopping and on-site energies:

$$H = -\sum t_{jk} c_j^{\dagger} c_k.$$

Assume $t_{jk} = \overline{t}_{kj}$. Let $|gs\rangle$ be the ground state of this system. Denote $M \subset \{1, \ldots, N\}$ as some subset of the sites, and let P_{ij} be a projection matrix onto sites in M. Our goal is to prove that there is a very efficient algorithm for computing the entanglement entropy of region M, S(M), in terms of the matrix

$$A_{IJ} \equiv \langle \mathrm{gs} | c_I^{\dagger} c_J | \mathrm{gs} \rangle.$$

Here I only runs over indices in set M.

To begin, it will help us to diagonalize H. Let

$$H = \sum_{\alpha} E_{\alpha} d_{\alpha}^{\dagger} d_{\alpha}$$

and

$$d_{\alpha} = U_{\alpha i} c_i$$

(summation convention employed) be the transformation which diagonalizes the Hamiltonian. As is usual for a system with fermions, the ground state of the system is

$$|\mathrm{gs}\rangle = \prod_{E_{\alpha} < 0} d^{\dagger}_{\alpha} |\mathrm{vac}\rangle$$

(We are taking the Fermi energy to be 0.) Let $\Pi_{\alpha\beta}$ be a projection matrix onto states with $E_{\alpha} > 0$.

- (a) Find an expression for the matrix A_{ij} .
- (b) Using the properties of the ground state, and Wick's theorem, explain why the reduced density matrix of region M,

$$\rho(M) = \underset{N-M}{\operatorname{tr}} |\mathrm{gs}\rangle \langle \mathrm{gs}|,$$

must be of the form

$$\rho(M) = \exp\left[-B_{IJ}c_I^{\dagger}c_J\right].$$

- (c) Show that the eigenvectors of A and B are the same, and relate their eigenvalues.
- (d) Conclude that

$$S(M) = tr \left[-A \log A - (1 - A) \log(1 - A) \right]$$

The entanglement entropy can often be used as a very useful order parameter for describing phases of quantum field theories. Even when it cannot be used as a true order parameter, it can often nonetheless be a very useful way of understanding transitions between two different regimes of a field theory.

For example, consider the 1 dimensional Anderson model on a circular lattice of N sites with on-site disorder, which has a Hamiltonian given by

$$H = -\sum_{i=1}^{N} \left(c_i^{\dagger} c_{i+1} + c_i^{\dagger} c_{i-1} + \epsilon_i c_i^{\dagger} c_i \right)$$

where $N + 1 \sim 1$, and ϵ_i are iid zero-mean Gaussian random variables with variance σ . It is known that for any $\sigma > 0$, all eigenvectors of H are localized in the large N limit. However, as $\sigma \to 0$, on "small length scales" the model should look free. One can parameterize how free this model looks by a correlation length ξ , which is known to scale as $\xi \sim \sigma^{-2}$. Let the region M consist of lattice sites $1, \ldots, L$.

- (e) Heuristically sketch what you think S(L) should look like, as a function of L. Take the limit $N \to \infty$. Whenever appropriate, make sure you have the correct pre-factors in front of leading order terms.
- (f) Write some numerics to simulate S(L) on random instances of the Anderson model. Plot S(L), averaged over many realizations of disorder, for various values of σ . Do you recover the prediction of the previous part?
- (g) Recover the scaling $\xi \sim \sigma^2$ from numerical simulations of this model, using entanglement entropy.