Fibonacci Numbers

Define $a_{0}=a_{1}=1$, and then define

$$
a_{n}=a_{n-1}+a_{n-2}
$$

for $n \geq 2$. This generates the sequence of Fibonacci numbers, which surprisingly appear quite often in biology!

Define a vector

$$
\mathbf{a}_{n}=\binom{a_{n}}{a_{n-1}}
$$

(a) Find the matrix T such that

$$
\mathbf{a}_{n+1}=T \mathbf{a}_{n}
$$

(b) Find the eigenvalues and eigenvectors of T.

The matrix formalism allows one to exactly answer questions which would be very difficult by other means.
(c) Find a closed form expression for a_{n} as a function of n only.
(d) Show that

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\frac{1+\sqrt{5}}{2}
$$

This number is called the golden ratio. It was deeply appreciated by the ancient Greeks and appears frequently in their architecture.

