continuum mechanics \rightarrow viscous fluids

Squeeze Flow

In this problem we will consider a situation called "squeeze flow", where we apply an average constant pressure P_s to the top plate of a parallel plate, with viscous fluid of viscosity η in between. This will make the height h(t) between the plates a decreasing function of time. We assume that the parallel plates are infinite in the y direction, and have a length $L \gg h(t)$ in the x direction. Set x = 0 to the center of the plates.

(a) Use mass conservation to show that the volume flow rate per unit width (in the y direction), Q, is get by

$$Q = -hx.$$

- (b) Now, approximate that h is slow enough, and h is small enough, that the approximation that we have a Poiseuille flow is reasonable. Use this approximation to find $v_x(x, z)$.
- (c) Use a conservation law to find $v_z(x, z)$.
- (d) Given v_x and v_z , determine the pressure P(x, z) for 2|x| < L. Normalize by using that P(x, 0) = 0 for 2|x| > L.
- (e) Now, find \dot{h} , given that the average pressure on the top of the top plate is $P_{\rm s}$.
- (f) Determine the function h(t). Show that for large times t:

$$h(t) \approx \sqrt{\frac{\eta L^2}{2P_{\rm s}t}}$$