Vortex Knots

In this problem, we will predict a fascinating phenomenon called a vortex knot - a closed loop of vorticity in space. Such vortex knots may be relevant in turbulent fluid dynamics.

To begin, let us recall that the velocity of a vortex filament is given by

$$
\partial_{t} \mathbf{r}\left(s_{0}\right)=\frac{\Gamma}{4 \pi} \int \mathrm{~d} s \frac{\partial_{s} \mathbf{r} \times\left(\mathbf{r}\left(s_{0}\right)-\mathbf{r}(s)\right)}{\left|\mathbf{r}\left(s_{0}\right)-\mathbf{r}(s)\right|^{3}}
$$

where Γ is the circulation of the vortex, and $\mathbf{r}(s)$ describes the position of the filament at "position" s. Feel free to normalize s so that $\left|\partial_{s} \mathbf{r}\right|=1$.

It is "impossible" to find nontrivial solutions to the Biot-Savart equation above. However, there are approximations for which interesting solutions do exist. We will consider one called LIA (localized induction approximation), in which we approximate that

$$
\mathbf{r}(s) \approx \mathbf{r}\left(s_{0}\right)+\partial_{s} \mathbf{r}\left(s_{0}\right)\left(s-s_{0}\right)+\frac{1}{2} \partial_{s}^{2} \mathbf{r}\left(s_{0}\right)\left(s-s_{0}\right)^{2}
$$

and neglect all higher order terms.
(a) Show that under LIA, up to a log-divergence term which can be absorbed into an overall constant C, the Biot-Savart law reduces to

$$
\partial_{t} \mathbf{r}=C \partial_{s} \mathbf{r} \times \partial_{s}^{2} \mathbf{r}
$$

(b) As we'll be looking for knot solutions, it will be convenient to switch to cylindrical coordinates (r, ϕ, z). Show that in these coordinates:

$$
\begin{aligned}
& \frac{1}{C} \partial_{t} r=r \partial_{s} \phi \partial_{s}^{2} z-2 \partial_{s} r \partial_{s} \phi \partial_{s} z-r \partial_{s}^{2} \phi \partial_{s} z \\
& \frac{1}{C} \partial_{t} \phi=\frac{\partial_{s}^{2} r \partial_{s} z-\partial_{s} r \partial_{s}^{2} z}{r}-\left(\partial_{s} \phi\right)^{2} \partial_{s} z \\
& \frac{1}{C} \partial_{t} z=2\left(\partial_{s} r\right)^{2} \partial_{s} \phi+r \partial_{s} r \partial_{s}^{2} \phi+r^{2}\left(\partial_{s} \phi\right)^{3}-r \partial_{s}^{2} r \partial_{s} \phi
\end{aligned}
$$

(c) Verify that

$$
\begin{aligned}
& r=R, \\
& \phi=\frac{s}{R}, \\
& z=\frac{C t}{R}
\end{aligned}
$$

satisfy the equations of part (b), if R is a constant. What does this solution physically correspond to, and what does R mean?
(d) Now, linearize the full equations of motion about this solution. Show that you can obtain

$$
\begin{aligned}
& \frac{1}{C} \partial_{t} r_{1}=\partial_{s}^{2} z_{1} \\
& \frac{1}{C} \partial_{t} \phi_{1}=-\frac{\partial_{s} z_{1}}{R^{2}} \\
& \frac{1}{C} \partial_{t} z_{1}=-\partial_{s}^{2} r_{1}-\frac{r_{1}}{R^{2}}
\end{aligned}
$$

(e) Let us look for soliton (traveling wave) solutions of the form $\mathbf{r}(s, t)=\mathbf{r}(s-u t)$ where u corresponds to the wave velocity. Imposing the conditions that r_{1} is a periodic function in s with some period L, show that you find

$$
r_{1} \sim \cos \left(\beta+\frac{2 q \pi}{L}(s-u t)\right)
$$

(since these are linear equations, the overall constant is undetermined) for an arbitrary constant β, along with the wave speed

$$
u=C \sqrt{\left(\frac{2 q \pi}{L}\right)^{2}-\frac{1}{R^{2}}}
$$

Also, find ϕ_{1} and z_{1} as functions of $s-u t$. These are the promised vortex knots!
(f) Explain why the fact that ϕ is an angular coordinate restricts us to take $L=2 \pi R p$, for $p=1,2, \ldots$.
(g) Explain why only solutions with $q>p$ are stable.
(h) Show that the vortex knot solutions you have found are toroidal knots in that the perturbed filament lives on an elliptical torus. The numbers q and p correspond to windings of the knot around the cycles (the "inner/outer circles") of the torus.
(i) Topologically, the knot corresponding to q and p is the same as the knot with those integers reversed. However, we have just found one of these knots is stable, and one is unstable. Give a simple explanation for why this fact should not be surprising.

