
continuum mechanics → viscous fluids FFF

Circulatory System as a Circuit

The flow of blood inside of an animal comprises its circulatory system. The hydrodynamics of blood is a
very tricky subject to study, both because of the difficulty of doing experiments and the highly nonlinear
and non-Newtonian nature of blood. Nonetheless, some basic results of interest can be obtained by the
construction of simple theoretical models. For this problem, assume blood is an incompressible fluid with
density ρ. Our first goal is to argue that some aspects of the circulatory system can be modeled by
electrical circuits. After that, we will use some very simple but beautiful arguments to derive a subset of
an incredibly beautiful set of generic scaling laws governing biological organisms, based entirely on simple
arguments related to the flow of blood in the circulatory system.

The simplest model of a blood vessel consists of a rigid tube of radius a and length L filled with flowing
blood with Newtonian viscosity coefficient η. Suppose that the pressure difference across the vessel is P .
Assume all fluid flow is oriented along the blood vessel (no radial or angular components), and assume
the flow is static.
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(a) Find an expression for the velocity of the blood inside of the vessel.

(b) Show that the volume flow rate Q is related to the pressure drop P by a linear relation, P = RQ,
where the coefficient R is given by

R =
8ηL

πa4
.

We will call R the “resistance” of the blood vessel, later in the problem.

Now, suppose the front end of the blood vessel connects to the heart. A simple model of the heart
consists of a chamber with volume V , and compressibility coefficient κ > 0, such that if its equilibrium
volume is V0:

V − V0 = −κP.

Muscles help cause the heart to contract, forcing the flow of blood, as depicted in the diagram below. In
this model, the heart pumps blood into a simple blood vessel of the type studied just above.

(c) Suppose that the heart is “driven” by a pressure · · ·+Gδ(t) +Gδ(t− τ) + · · · . This corresponds to
the muscle which causes heartbeats. What is 〈Q〉, the average flow rate pumped by the heart? Ignore
the mechanisms by which blood returns to the heart, and leaves the blood vessel.1

(d) Discuss how the circulatory system of an animal can be related to an electrical circuit: i.e., what
represents current, voltage etc.? Discuss what circuit elements represent a blood vessel and the heart.

Now, let’s turn to biology. Again, for simplicity only considering the part of the circulatory system
which sends blood away from the heart, and not back to the heart, the circulatory system of a typical

1Think about how V − V0 relates to Q.



animal could be modeled as follows: there is a heart, which pumps according to the simple pulses given
in part (c), and which sends blood flowing down a vessel with resistance R1, at an average flow rate Q1.
Then this vessel splits into n vessels with resistance R2; subsequently, those vessels split into n vessels
with resistance R3, etc..., so in general the resistance of each vessel in the kth branch is Rk.
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(e) By an analogy to circuits, show that the effective resistance seen by the heart is2

Reff =
∑
k

Rk

nk
.

Of course, to get any farther, we need to determine what Rk is, and we will do this by arguing what
Lk and ak are: i.e., the length and radius of the vessels, respectively.

(f) Assume that the blood in one vessel is approximately destined for all locations in the body which are
within a distance of L from the center of the blood vessel. If, as each blood vessel splits into n smaller
vessels, these smaller vessels are also destined for the same volume, determine the ratio Lk+1/Lk.

(g) Assuming that the average velocity of the blood is constant in all blood vessels, determine the ratio
rk+1/rk.

Our next assumption will be that this branching process stops at a series of very tiny tubes, which
we call the capillaries. Each capillary has a resistance of Rc, which we’ll approximate is universal for
each biological organism (with a circulatory system). Let Nc be the number of capillaries in the organism
(this will certainly be an organism dependent quantity!).

(h) Combining the results of the previous 3 parts, the assumptions above, and making all appropriate
approximations, show that

Reff ≈
Rc

Nc
.

Now that we’ve developed the above results, we can finally start to answer some interesting questions.
For starters, we’ve assumed that the blood’s velocity does not change as it flows through the circulatory
system. Let’s think about the consequences of this. Since the blood is delivering oxygen to the cells, we
should roughly expect that each cell requires some fixed amount of blood flow per unit time to sustain
its oxygen needs. Also, recall that a cell is made up of mostly water.

(i) Using the above argument to get you started, conclude that the mass M of our organism should be
proportional to the total volume Vcirc of all of the blood vessels in its circulatory system.

(j) Since each capillary feeds the cells with some fixed amount of oxygen per unit time, it is natural
to assume that the metabolic rate (the rate at which energy can be spent by the cells) of the total
organism, B, is proportional to Nc. Show that

B ∼M3/4.

This result is quantitatively verified by numerous experimental results in biology.

2It is probably easiest to do this by using the fact that the power dissipated in a circuit, if the current flowing down
resistor R1 is I1, is given by P = I2

1Reff .



(k) Suppose that each cell will expend an energy E before it must die. Argue that the time scales of an
organism, such as its lifetime, scale as τ ∼M1/4.


