Collapsing Bubble

Consider an incompressible fluid of density ρ, at pressure P_{0}, with a bubble of radius R inside, with no internal pressure. At time $t=0$, the bubble pops, and fluid can rush in. Let $R(t)$ denote the radius of the bubble as a function of time.
(a) Begin by using mass conservation to find completely the velocity field, up to an undetermined function of time.
(b) Then, use the Navier-Stokes equation, and find a first order differential equation in R for \dot{R}^{2}.
(c) Show that by integrating this equation, and then integrating further the equation for $\dot{R}(R)$, that the time it takes for the bubble to collapse is given by

$$
t=c R \sqrt{\frac{\rho}{P_{0}}} .
$$

Evaluate the constant c numerically.

