
continuum mechanics → viscous fluids FFF

Electrophoresis

Electrophoresis refers to the migration of small charged particles in an electric field. It is frequently
used in biology to separate charged particles. A classic example of this is DNA (gel) electrophoresis,
where DNA strands are pulled in an electric field through a gel. Based on the length of the DNA strands,
they will travel farther in the gel. Comparing the patterns of two electrophoresis experiments on different
DNA samples can provide a very powerful test of whether the two samples of DNA fragments are the
same. (Frequently the fragments are obtained by mixing proteins which cut the DNA into a solution
of long DNA strands. Depending on the base pair sequence on the DNA, the molecule will get cut at
different places, and so different sequences lead to different combinations of lengths of DNA strands.)

Let us begin by studying the electrophoresis of small charged particles, such as a small charged ion of
sodium in water. Suppose that the charge of the sodium atom is Q, it can be modeled as a sphere of radius
R, and it is placed in water, a viscous fluid of viscosity η. Note that, since we are clearly on microscopic
scales for this problem, the Reynolds number is always incredbly small, so you may approximate all flows
as being in this limit.

(a) Show that if we place this ion in an electric field E, that it will saturate to a steady-state trajectory,
traveling at velocity

v = µE.

Here µ is called the mobility. Find an expression for the mobility in terms of η, Q and R.

(b) Using the fact that η ≈ 10−3 kg/m · s, R ≈ 10−10 m, and Q = 1.6 × 10−19 C, determine µ. A
reasonable electric field in the lab is about 10 V/m – how fast will the ion move?

This result is not quite right, but it is the right order of magnitude. Unfortunately, many objects of
interest in electrophoretic studies are quite a bit larger. When we place large charged objects in water,
or any other ionic solution, we have to worry about the separation of positive and negative charges in the
fluid itself. So let us briefly discuss the electromagnetism of an ionic solution. Suppose that we have a
solution of ions of charge ±q, each at density n0, with the solution at temperature T . It is reasonable to
expect that the density of ions is proportional to the Boltzmann weight at temperature T . Suppose that
we normalize the electric potential ϕ so that there is an equal density of positive and negative ions when
ϕ = 0.

(c) Placing a system at ϕ 6= 0 results in an imbalance of positive and negative ions. Show that Poisson’s
equation should be modified to

∇2ϕ = −ρ(ϕ)

ε
=

1

λ2
ϕ

for small ϕ. Determine the constant λ in terms of n0, q, T and ε.

(d) Suppose that we have a charge Q distributed uniformly on the surface of a sphere of radius R. What
is the potential ϕ which solves the equation of part (c)? (Note that the boundary conditions due to a
surface charge are unchanged.). Show that the charge is completely shielded by a sphere of ions with
charge −Q.

(e) For a typical salty solution relevant for electrophoresis, we have q = 1.6× 10−19 C, T ≈ 4× 10−21 J,
ε ≈ 10−11 F/m, and n0 ∼ 1026 m−3. Determine the value of λ.



(f) Compare the value of λ to the size of the sodium ion. Also compare λ to the size of a large protein
(about 10 nm in width). Is λ comparable to the microscopic length scales associated with macro-
molecules?

(g) Using the formula from part (d), argue that it is probably not very important to account for the salty
solution in our formula for µ, so long as R� λ.

Now, let us discuss how electrophoresis through a salty solution is altered when R � λ. It will help
to move to a reference frame that moves at velocity v0 with the charged sphere. In this reference frame,
the asymptotic velocity is −v0. There is one more subtlety: we need to split up the electric potential
into ϕext + ϕint, where ϕint is due to the Debye shielding, and ϕext is related to the external field, in the
absence of ions. The reason for this is that we know that physically, the application of the electric field
will likely not completely ionize the water, but instead simply induce current flow. We now approximate
that

∇2ϕint =
1

λ2
ϕint,

i.e. only part of the electric field is effectively contributing to the ionization of the water near the sphere.
ϕext on the other hand, simply obey’s Laplace’s equation.

(h) Using Ohm’s Law for electric current on Eext, translate the assumption that no charge flows into the
sphere as a constraint on Eext(x) at the boundary of the sphere. Conclude by finding a solution of
Laplace’s equation ϕext with the appropriate boundary conditions.

(i) Derive the following equation for the fluid velocity, based on balance of forces in the fluid:

∇P = − ε

λ2
ϕint (Eext + Eint) + η∇2v.

(j) Argue that, except for very close to the sphere, we can approximate E ≈ Eext. Split up the fluid
velocity as follows:

v = −Eext

µ
+ v′,

where right now the value of µ is a mystery (we will determine it later). Show that if we make the
ansatz

v′ = CϕintEext

for an appropriate choice of C which you should determine, that so long as R � λ, to leading order
in λ, v will solve the equation of motion from part (i), with P = 0.

(k) By imposing physical boundary conditions on v at the surface of the sphere, conclude that

µ ≈ Qλ

4πηR2
.

Compare with the result from part (a).

(l) For a protein of charge Q = 10q and R ∼ 10 nm, estimate the value of µ, and compare with the result
of part (b).


