Genetic Homogeneity

Consider the voter model on the lattice $\mathbb{Z}_{N}=\{0,1, \ldots, N-1\}$, corresponding to a lattice with periodic boundary conditions and N sites, each with only one neighbor. Assume that the rates of transition between states are still given by the rate 1 . The case of $N=12$ is sketched below, in a random initial state.

As we will soon see, many properties of the 1D voter model are not so hard to obtain. Denote by $\mathrm{P}(x, t)$ the probability that at time t, a site a distance x steps away from a given site has the opposite state.
(a) Approximating x as a continuous variable, show that if $x \ll N$,

$$
\frac{\partial \mathrm{P}}{\partial t}=\frac{\partial^{2} \mathrm{P}}{\partial x^{2}}
$$

(b) Show that, under the appropriate boundary condition of $\mathrm{P}(0, t)=0$ (thinking of the solution as depending only on $|x| \in \mathbb{R}^{+}$), the solution of the equation above is

$$
\mathrm{P}(x, t)=\frac{1}{2} \operatorname{erf}\left(\frac{|x|}{2 \sqrt{t}}\right) .
$$

(c) How does the time required to reach consensus, T, scale with N ?

The voter model in 1D on a graph which is expanding at some rate v can be used to model the spread of alleles in bacteria, growing in a petri dish. The basic idea is as follows: suppose we start with a disk-shaped region, filled randomly with bacteria which either have allele 0 or 1 . The bacteria at the edge, with room to divide, can divide outwards, forming a bigger circle.

We can write the effective equation here, using the same logic as above,

$$
\frac{\partial \mathrm{P}}{\partial t}=\frac{D}{\left(R_{0}+v t\right)^{2}} \frac{\partial^{2} \mathrm{P}}{\partial \theta^{2}} .
$$

Here R_{0} relates to the initial radius of the circle, related in turn to the initial size of the bacterial colony. Note that we have replaced x with an angular coordinate θ, as here since the radius is time-dependent this is a better description.
(d) Using the same boundary condition and initial condition as in the previous part, find the solution $\mathrm{P}(|\theta|, t)$.
(e) Explain why the expected number of domains, N_{d}, (corresponding to the number of distinct regions where all nodes of at time t), is given by

$$
N_{\mathrm{d}}(t)=2 \pi \frac{\partial \mathrm{P}\left(t, 0^{+}\right)}{\partial \theta}
$$

(f) Show that in this case, the system does not reach a consensus state as $t \rightarrow \infty$. Instead, show that

$$
N_{\mathrm{d}}(\infty)=\sqrt{\frac{\pi R_{0} v}{2 D}} .
$$

Comment on the biological implications.

