Tracing Magnetic Field Lines

Consider a magnetic field given by

$$
\mathbf{B}=B_{0} \hat{\mathbf{z}}+\nabla \times \mathbf{A}
$$

where $\mathbf{A}=A_{0}(x, y, z) \hat{\mathbf{z}}$.
(a) Find the components B_{x}, B_{y}, and B_{z} of \mathbf{B}.
(b) Now, let $\mathbf{r}(z)$ trace a magnetic field line - i.e., it is the curve such that the tangent line $\partial_{z} \mathbf{r}$ is parallel to $\mathbf{B}(\mathbf{r})$. Show that the curves $x(z)$ and $y(z)$ can be found by solving Hamilton's equations with $H=A_{0} / B_{0}$. Of x and y, which one is the "position" and which is the "momentum"?

Typically, we find applications of Lagrangian mechanics outside of physics, since variational calculus is a very universally useful skill. Applications such as this where Hamilton's equations come up outside of physics are much rarer.

