
probability theory → Markov chains FFF

Sampling from Distributions with Constraints

Many hard problems in combinatorics and other fields come from asking questions with nontrivial con-
straints. As we have seen, often times the most practical solution is just to simulate such problems with
MCMC methods. As an example of a problem where a constraint can make brute force sampling highly
inefficient, consider the following set-up.1 We can define a stochastic process Yt by

Yt+1 = ρYt +Wt

with Wt ∼ N (0, 1) iid random variables, and ρ some real constant. Suppose we wanted to sample from
the distribution of (Y1, Y1, . . . , YL) subject to the constraint that

Y1 > Y2 > · · · > YL.

(a) Code up a brute force algorithm to sample from this distribution by doing the obvious thing, simply
generating Yt sequences according to the rule and discarding them until we find one subject to the
constraint. Choosing L = 12, how many tries will your program take, on average, to find a correct
sequence? Determine the answer numerically, of course.

This is a very inefficient algorithm. In this part, you will show that we can in fact use the Gibbs sampler
to be much more efficient about it.

(b) Show that p(Yt| · · · , Yt−1, Yt+1, . . .) = p(Yt|Yt−1, Yt+1).

(c) Show that p(Yt|Yt−1, Yt+1) is a Gaussian PDF with

E(Yt|Yt−1, Yt+1) =
ρ

1 + ρ2
(Yt−1 + Yt+1) , Var(Yt|Yt−1, Yt+1) = 1− ρ

1 + ρ2
.

(d) How would you use the Gibbs sampler to sample from this distribution? Code up the Gibbs sampler,
and comment on its performance relative to the previous method.

1Thanks to Emmanuel Candès for giving this problem to me in a class at Stanford.


