classical mechanics \rightarrow Newtonian mechanics

Finite Time Blow Up in Newton's Law

Consider a point particle of mass m in the potential well

$$V(x) = -V_0 x^a$$

where a > 0 is some constant. At time t = 0, the particle is at x = 0, with some small velocity $v_0 > 0$.

- (a) Using energy conservation, reduce the dynamics to a simple first order differential equation.
- (b) Although this equation cannot be exactly solved, describe the dynamics at late time. In particular, show that for $a > a_c$, where a_c is some critical value you should determine, the solution $x(t_0) = \infty$ at some finite time t_0 . What is the asymptotic behavior of x(t) for $a = a_c$, and $a < a_c$?
- (c) If $a > a_c$, estimate the time t_0 , given the initial conditions at x = 0. Be sure to consider both the cases when v_0 is large, and when v_0 is small.
- (d) One way such a potential can be set up is in a rotating reference frame. For example, consider a particle on a rotating circular turntable, constrianed to only move in the radial direction (about the axis of rotation). If we are in a reference frame which is rotating at constant angular velocity ω , determine the values of V_0 and a. What is the late time dynamics in this case? Explain how the answer you find is consistent with conservation of energy in an inertial reference frame.