
quantum field theory → topological quantum field theory FFF

Entangled Polymers

In this problem, we will show a remarkable connection between the theory of entangled polymers, and
Chern-Simons gauge theory.
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C2

Let’s begin by deriving a topological fact about two entwined closed curves, C1 and C2, in the plane
R3, as depicted in the picture above. Almost 200 years ago, Gauss showed that the linking number
defined by the integral

L ≡ 1

4π

∮
C1

dx1 ×
∮
C2

dx2 ·
x1 − x2

|x1 − x2|3

is a topological invariant of these two curves (i.e., you cannot smoothly deform these two curves, without
passing them through each other, in a way that changes L).

(a) Consider running unit “electric” currents along each polymer. Show using electrodynamics that the
linking number, as defined above, is a topological quantity, and give a physical interpretation for what
it counts.

Now let us study the connection with Chern-Simons gauge theories. Consider the partition function

Z(g) =

∫
Dx1(s)Dx2(s)DA1(x)DA2(x)e−Spoly[x1,x2]−Stop[A1,A2,x1,x2]

where g is a coupling constant, x1(s) and x2(s) are curves in space corresponding to the entangled
polymers, A1 and A2 are 1-form fields in space, and Spoly[x1,x2] is a “probability” term in the action
which weights configuration curves x1 and x2 based on their interactions with each other. In general, this
term may be quite complicated. However, the topological term is essentially a Chern-Simons term:

Stop = −ig

∫
x1(s)

A1 − ig

∫
x2(s)

A2 + i

∫
R3

A1 ∧ dA2.

(b) Explain why the propagators 〈A1A1〉 = 〈A2A2〉 = 0, and the propagator

〈A1i(p)A2j(−p)〉 = −iεijk
pk
|p|2

.

Be sure to mention gauge invariance!

(c) Integrate out A1 and A2 and show that the entire contribution of the path integral is simply to break
up the partition function into linking number sectors.

(d) How can we extract information about the probability that the linking number is L, given Z(g)?


