
quantum mechanics → harmonic oscillator FFF

The Morse Potential

The Morse potential is used to model the vibrational excitations of a chemical bond. If the length of the
chemical bond is x, with conjugate momentum p, then the Hamiltonian of the system is given by

H =
p2

2µ
+D

(
e−2x/a − 2e−x/a

)
.

µ roughly corresponds to the “mass” of the two atoms in the bond in the center of mass frame, D is a
measure of the strength of the chemical bond, and a is a measure of the possibility of variations about
equilibrium.

(a) Plot or sketch the Morse potential (the potential energy part of the Hamiltonian) as a function of x.
Verify that the statements made about D and a are reasonable.

It is tricky to find the eigenvalues E of a Hamiltonian like this, in general. However, here we can do
it with a trick. Begin by defining the dimensionless variables

ε ≡ 2µEa2

~2
,

κ2 ≡ 2µDa2

~2
,

r ≡
√
κe−x/2a.

(b) Write Schrödinger’s equation in position space, make the substitutions above, and show that it be-
comes

d2ψ

dr2
+

1

r

dψ

dr
+
r2

2
ψ +

4ε

r2
ψ = 2κψ.

(c) Make an analogy to the 2D harmonic oscillator, and conclude that the eigenvalues En of H (now in
dimensionful units) are given by

En = −D
(

1− ~
a
√

2µD

(
n+

1

2

))2

.

(d) Show that at some point, En ≥ En+1. Argue that only the eigenvalues E0, E1, . . . En correspond to
actual bound states for H.

(e) There is a critical value of D, Dc, such that if D ≤ Dc, there are no bound states to the Morse
potential. Find the value of Dc.

(f) On the other hand, if D � Dc, then we can approximate that the first few excited states will
approximately look like a harmonic oscillator spectrum (in 1D). Express the effective frequency of
this oscillator, ωeff , in terms of ~, a, D and µ. What is the physical reason why this approximation
is valid?


