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Orthogonality Catastrophe

Let us consider a non-interacting system of N fermions, each of which is under the effect of a nondegenerate
Hamiltonian H0, whose eigenvalues are written as E1 < E2 < · · · : i.e, the total Hamiltonian of the system
is H = H0,1 + · · ·+H0,N . Denote with |0〉 the properly normalized and antisymmetrized ground state of
this system, and denote with |i〉 the single fermion eigenvector of H0 corresponding to energy Ei.

Now, let us perturb the single fermion Hamiltonian to H = H0+V , for some small perturbation V , and
denote |0′〉 as the ground state of this new Hamiltonian, again properly normalized and antisymmetrized.
Define |i′〉 the single fermion eigenvector of H corresponding to energy E′i.

The goal of this problem will be to compute

I ≡
∣∣〈0|0′〉∣∣ ,

i.e., the overlap between the two ground states. As we will see, for a typical system, when N is large, I
is very small. This effect is called the orthogonality catastrophe.

(a) Find an exact expression for I, by expressing your answer in terms of the matrix Aij ≡ 〈i|j′〉. The
remainder of this problem deals with how to heuristically understand the behavior of I at large N .

(b) To proceed, it will help to prove the following mathematical theorem: let A be an n×n matrix, with
column vectors ei (i = 1, . . . , n) such that ei · ei = 1. Show that | det(A)| ≤ 1.

(c) Combine the results of parts (a) and (b) to show that

I < e−J

where

J ≡ 1

2

∑
i≤N<j′

∣∣〈i|j′〉∣∣2 .
Suppose that we find |i′〉 by using first order perturbation theory. Suppose further that we have

〈i|V |j〉 ∼ γe−α|Ej−Ei|

for typical states |i〉 and |j〉, and assume α is not “too small”. This is a very crude approximation, but
it will make the calculation simpler. Let ρ(E) be the density of states for H0 – assume that there are
enough states, and N is large enough, that ρ(E) may be approximated by a smooth function. Denote by
EF the Fermi energy: i.e., the energy EN . Work only to lowest order in perturbation theory.

(d) Show that, so long as dρ/dE > 0 “reasonably” fast, we find J → ∞ as N → ∞. This is the
orthogonality catastrophe. Make any reasonable approximations.

This has important consequences in many condensed matter systems, particularly in experiments. We
have shown that the ground state of a typical many-body condensed matter quantum system is incredibly
sensitive to small perturbations. It turns out one of the practical consequences of this is that an experiment
trying to measure a resistivity of a material may end up measuring the “contact resistance” at the leads
where they are taking their measurement, due to the small perturbations of the leads!


