quantum mechanics \rightarrow position and momentum

PT Symmetric Quartic Hamiltonian

Consider the quantum Hamiltonian

$$
H=\frac{p^{2}}{2 m}-g x^{4}
$$

When restricted to the real line, this is certainly an ill-defined Hamiltonian. Surprisingly, if we choose to think of x and p as living in the complex plane, as opposed to the real line, it is possible to make sense of this H as having real, positive, and discrete eigenvalues. The deep reason for this is an unbroken PTsymmetry 1, but in this problem we will use a direct approach: we will show that the spectrum is real and discrete (the positive part would take more work) by mapping the Hamiltonian to another Hamiltonian with an identical spectrum.
(a) Let $\psi(x)$ be a stationary state with energy E. Write down the naïve eigenvalue equation for $\psi(x)$.
(b) As mentioned in the introduction, we can think of x as being a complex number, as opposed to just living on the real line. It turns out that we will ask that

$$
\lim _{|x| \rightarrow \infty} \psi(x)=0 \quad\left(0>\arg (x)>-\frac{\pi}{3} \text { or }-\frac{2 \pi}{3}>\arg (x)>-\pi\right) .
$$

Consider the contour in the complex plane defined by

$$
x=-2 \mathrm{i} L \sqrt{1+\frac{\mathrm{i} y}{L}} .
$$

with y a real parameter, and $L>0$ a real constant with the units of length. Describe the contour $x(y)$. Verify that $\psi(y) \rightarrow 0$ as $|y| \rightarrow \infty$.
(c) Make the change of variables in the eigenvalue equation from x to y, and find the eigenvalue equation for $\psi(y)$.
(d) Now, perform a Fourier transform:

$$
\phi(p) \equiv \int_{-\infty}^{\infty} \mathrm{d} y \mathrm{e}^{-\mathrm{i} q y / \hbar} \psi(y)
$$

Write down the differential equation for $\phi(q)$, and verify that it is a second order equation, with a linear term with non-zero coefficient.
(e) Show that you can find a function $\alpha(p)$ for which

$$
\phi(q)=\mathrm{e}^{\alpha(q)} \Phi(q),
$$

and the eigenvalue equation for $\Phi(q)$ does not have a linear term.

[^0](f) Show that an appropriate re-scaling of q, given by $z \equiv c q$ for some constant c, gives us the eigenvalue equation
$$
-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2} \Phi(z)}{\mathrm{d} z^{2}}+\left(4 g z^{4}-\hbar \sqrt{\frac{2 g}{m}} z\right) \Phi(z)=E \Phi(z) .
$$

Explain why the eigenvalues of this should be real and discrete. (It also turns out they are positive - you don't need to argue this.)

[^0]: ${ }^{1}$ This means a symmetry under parity and time reversal. How this works exactly is not important for the purposes of this problem - we won't really use this fact in our solution.

