Motion on $\mathrm{SO}(d)$ by Lagrange Multipliers

Previously, we have seen how to derive the equations of motion for the free d-dimensional rigid body by appealing to the group structure of the configuration space $\mathrm{SO}(d)$. There is a less mathematically elegant, but more direct approach, which employs Lagrange multipliers.

As before, let us consider the motion of a rigid body about the origin. If A describes the matrix in the configuration space $\mathrm{SO}(d)$, we have previously explained why the Lagrangian is

$$
L=\operatorname{tr}\left[\frac{1}{2} \dot{A} K \dot{A}^{\mathrm{T}}-B\left(A^{\mathrm{T}} A-1\right)\right]
$$

where

$$
K \equiv \int \mathrm{~d}^{d} x x x^{\mathrm{T}} \rho(x) .
$$

Of course, the Lagrange multiplier B leads to a trivial term if we choose to express \dot{A} in terms of the Lie algebra-valued velocities, but in this problem we will not do this. Instead, we will allow A to be completely arbitrary, and only impose the constraint that $A \in \mathrm{SO}(d)$ by the Lagrange multiplier (and continuity of the equation of motion).
(a) Explain why B is a symmetric matrix.
(b) Show that the equations of motion imply

$$
A^{\mathrm{T}} \ddot{A} K-K \ddot{A}^{\mathrm{T}} A=0 .
$$

(c) Define the matrix

$$
\Omega \equiv A^{\mathrm{T}} \dot{A}
$$

Verify that Ω is antisymmetric.
(d) What is the equation of motion in terms of Ω ?
(e) Verify by further manipulations that you can recover the equation we derived by group theoretic arguments earlier:

$$
M^{a b} \dot{\omega}^{b}=f^{a d c} M^{d b} \omega^{b} \omega^{c}
$$

where ω^{b} are the generalized angular velocities, $M^{a b}$ is the generalized moment of inertia, and $f^{a d c}$ are the structure constants of $\mathrm{SO}(d)$.

