statistical physics — reaction kinetics Y % % %
Kinetic Proofreading

DNA can be copied remarkably accurately, with an error occurring with probability of about 10~® per
base at the initial replication. Proteins can also be coded quite accurately, with error probabilities of
about 10™* per base. It is actually not trivial to achieve this task, as we will demonstrate in this problem.
The mechanism which seems to be often used is called kinetic proofreading.

Before moving to the actual mechanism of replication, let us start by looking at a toy example, which
will highlight for us the reason why we need the kinetic proofreading mechanism. Consider the formation
of a protein, which roughly occurs as follows: a polymer called mRNA feeds through another protein
called a ribosome. The ribosome itself attracts tRNA: proteins which, on one end, binds favorably to
specific sites on the mRNA, and on the other end, carries an amino acid. The ribosome then pulls off the
amino acid, and attaches it to the growing strand of a protein.
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In the simple sketch of a ribosome shown above, we have two types of bases on the mRNA: red and
blue, and two associated amino acids and types of tRNA. Let us assume that, as in the sketch, we have
a red base on the mRNA. We have the following reaction possible, with rates shown on the reaction:
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ribosome —— correct RNA:ribosome —— correct protein
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This is the reaction we want to occur. However, we have also the following bad reaction:
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ribosome —— incorrect RNA:ribosome —— incorrect protein
v

Note that we might expect o ~ v, since there should be little attraction between the wrong tRNA and
the mRNA, but we do expect a to be the fastest time scale in the problem, and to have a > pu. It is
also reasonable to expect w to be the slowest time scale in the problem — this will help simplify your
calculations a bit. Model the ribosome as a continuous time Markov chain in its stationary distribution,
neglecting the w reaction when finding the stationary distribution. In this problem, you will also want
to relate free energy differences to the reaction rates: assume that there are no important intermediate
steps in the reactions.
Let us denote the error rate f with
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a) Within the above approximations, what is the rate of creation of incorrect proteins, and the rate for
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correct proteins?

(b) Show that the error rate f = fy, where
fO = e—(Gerr_Gcorr)/kBT

where Gy is the free energy of the incorrect tRNA:ribosome complex, and G,y is the free energy of
the correct tRNA:ribosome complex.

(c) Tt is reasonable to assume that o ~ 103 s~1. A ribosome in vivo can produce about 10 base pairs on
a protein per second. Is it possible to achieve this and have the low error rate?

Before moving on to kinetic proofreading, let us consider a more naive guess: that we can improve
the error rate by simply adding a second internal configuration for the tRNA:ribosome complex. Roughly
speaking, this means that we “check twice”:
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ribosome —— correct RNA :ribosome —— correct tRNA:ribosome*——— correct protein
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(d) Show that, in general, the error rate is now given by

(p(p+ B) + pn)(AM(v + B8) + aB)
(c(v+B8) +vn)(AMp+ B) + aB)

(e) Suppose that we do not expend any free energy during this process. Show that the constraints on the
reaction rates added by this constrain f = fy. So the extra step does not do any good.

f=

Now, the idea behind kinetic proofreading is that the § reaction, which converts between the two
internal ribosome states, is driven by expending free energy. In biology, this is driven by ATP phospho-
rylation and this means that the second internal state may be at a very high free energy, relative to the
other configurations. This renders some of the conclusions of part (e) moot.

ow tha expending free energy, we now have the bound f > f5. How do we saturate this boun
f) Sh hat by ding f gy. h he bound f > f2. How d t this bound
in practice?

(g) Give an intuitive explanation for why the bound is fg. Guess at how we obtain bounds of fj for any
positive integer n.

(h) Earlier in the problem, we said to assume that w is the smallest time scale in the problem. How much
can we relax this assumption without qualitatively changing the answer to part (f)?

(i) Return to the biological numbers given in part (c¢). Can you now explain how the cell could transcribe
proteins with the given speed and error rate? Be sure to consider the rate of production of proteins
given the kinetic proofreading scheme, and not just the relative rate f, although feel free to use any
approximations you found in part (f) and (h) make the kinetic proofreading scheme most efficient.



