probability theory \rightarrow random variables

Hoeffding's Inequality

Suppose that we have a biased coin with probability of heads p and probability of tails $1-p$. If we flip the coin N times, assuming each flip is independent, how many times do we have to flip it to have a good sense of the value of p ? To connect this problem to machine learning and neuroscience - how challenging is it to learn the value of p ? A very simple answer is provided by Hoeffding's inequality. Let $X_{i}=1$ if the $i^{\text {th }}$ flip is heads, and $X_{i}=0$ if it is tails. Let us estimate p with \widehat{p}, where

$$
\widehat{p} \equiv \frac{1}{N} \sum_{i=1}^{N} X_{i}
$$

The inequality we're looking for states that, regardless of p, we can estimate p with exponentially vanishing error:

$$
\mathrm{P}(|\widehat{p}-p|>\epsilon) \leq 2 \mathrm{e}^{-2 \epsilon^{2} N} .
$$

This problem will show you how to prove this inequality. ${ }^{1}$
(a) Explain why, for any real h :

$$
\mathrm{P}(\widehat{p}-p>\epsilon) \leq \mathrm{e}^{-(p+\epsilon) h N} \prod_{i=1}^{N}\left\langle\mathrm{e}^{h X_{i}}\right\rangle .
$$

(b) Show that

$$
\mathrm{e}^{-(p+\epsilon) h N} \prod_{i=1}^{N}\left\langle\mathrm{e}^{h X_{i}}\right\rangle \leq\left[\left(\frac{p}{p+\epsilon}\right)^{p+\epsilon}\left(\frac{1-p}{1-p-\epsilon}\right)^{1-p-\epsilon}\right]^{N} .
$$

(c) Show that

$$
\mathrm{P}(\widehat{p}-p>\epsilon) \leq \mathrm{e}^{-2 \epsilon^{2} N} .
$$

(d) By checking the probability that \widehat{p} is smaller than p, prove Hoeffding's inequality.
(e) Is it harder to learn the value of p to high accuracy or high precision? Heuristically explain why.

[^0]
[^0]: ${ }^{1}$ Thanks to Arthur Safira for suggesting this problem.

