probability theory \rightarrow random variables

Largest Random Variables

Consider a sequence of n iid random variables X_{1}, \ldots, X_{n}, drawn from the same probability distribution, which we assume is continuous. Denote $R_{1}=1$ and let R_{j} be the random variable for $j>1$ defined by

$$
R_{j}=\mathbb{I}\left(X_{j}>X_{i} \text { for } j>i\right)
$$

(a) Determine the probability distribution on R_{j} for $1 \leq j \leq n .{ }^{1}$
(b) Show that if $i \neq j, R_{i}$ and R_{j} are independent.

Denote

$$
S_{n} \equiv \sum_{j=1}^{n} R_{j} .
$$

(c) Compute $\left\langle S_{n}\right\rangle$. Determine the dominant term when $n \gg 1$.
(d) Compute $\operatorname{Var}\left(S_{n}\right)$. Determine the dominant term when $n \gg 1$.

[^0]
[^0]: ${ }^{1}$ For the next two parts, consider the problem if you switch the order of the random variables in the sequence. In particular, suppose you switch X_{i} and X_{j} for any $i \neq j$. What effect should this have?

