
probability theory → random variables FFF

The Holtsmark Distribution

Suppose that the distribution of stars in space is isotropic, such that the number density of stars is the
universe is n at all points in space. Approximate that all stars have the same PDF p(M) for their mass
M , and can be treated as point masses. Let ri be the position of a star, as measured by an observer
sitting at the origin. The gravitational field felt by the observer is given by the formula
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r̂i
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.

(a) Show that the characteristic function of g is given by1
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where M0

3/2 ≡ 〈M3/2〉.

(b) Show that
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where the function F (x) is defined by

F (x) =
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p(g) is referred to as the Holtsmark distribution.

(c) Plot F (x), and use it to give a fairly rough numerical estimate for the most probable result if g is
measured, assuming that G = 6.7× 10−11 J ·m/kg, M0 = 2.0× 1030 kg and n = 10−50 stars/m3.

1First consider a fixed volume V of space with a fixed number N of stars, with N = nV . Then take the limit that V

becomes all of space. Use the identity
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to conclude.


