
statistical physics → random walks and diffusion FFF

The Greenhouse Effect

The greenhouse effect refers to the phenomenon that the Earth’s effective temperature can be raised by
“trapping” electromagnetic thermal radiation. The trapping is caused by the interactions of low energy
photons with gases in the atmosphere – in particular, it is believed, H2O and CO2. In this problem, we
will derive a simple theoretical model explaining the greenhouse effect in mathematical terms.

We will first begin by looking at a seemingly unrelated problem, that of “gambler’s ruin”. This is a
classic Markov chain from the theory of probability, but we will only need to derive a simple result here.
The basic problem is the following: suppose that I have a random walk on the lattice {0, 1, . . . , N}. If
my random walk starts at X0 = k, and at each time step I have an equal probability of taking a step left
or right, what is the probability I will hit X = 0 before I hit X = n?

(a) We solve this problem as follows. Define ρk to be the probability that one reaches X = N before
X = 0, given that one starts at X0 = k. Find a set of recursive relations between the ρk.

(b) Solve these equations and show that

ρk =
k

N
.

Now, we return to the greenhouse effect. We can approximate the dynamics of a single photon by a
vertical random walk through the atmosphere. We will show later on that the density of the atmosphere
is well approximated by

n(z) = n0e
−z/a,

with z = 0 corresponding to ground level, n0 to the density near the surface, and a to some characteristic
length scale. Now, we basically need to figure out in what chunks we should break up the atmosphere so
that the photon has an equal probability of moving up or down by the time it is leaving the block. To
do this, we need information about how readily the photon interacts with gases, and this is conveniently
described by the cross section σ0. Using basic scattering theory, we can argue that the appropriate block
size for the atmosphere should be on the order of

∆z =
1

σn(z)

(c) Using this equation, show that even if the atmosphere has infinite height, the probability q of a photon
escaping the atmosphere is finite, and is given by

q =
1

aσ0n0
.

(d) Find q for a famous greenhouse gas, CO2, using a ≈ 8000 m, σ0 = 3.7 × 10−23 m2, and n0 =
1022molecules/m3.

Now, we are ready to model the greenhouse effect. Let us call I0 ≈ 1361 W/m2 the intensity of light
bathing the Earth (due to the Sun), and q0 the initial escape probability for a photon reflected off of the
Earth’s surface. We call ε ≈ 0.7 the “absorptivity” of the Earth (the fraction of incident radiation which
does not reflect off of the atmosphere). Label with σ the Stefan-Boltzmann constant. Trying crudely to
compare this model with realistic data, we would choose q0 ≈ 0.6.



(e) Using this data, find the effective average surface temperature of the Earth, T0. Does it seem accurate?

(f) Now suppose that the effective concentration n0 of gas increases to n′. Realistically, you could think
of this as doubling only the concentration of CO2, e.g., which was the gas we used when making the
above model. In terms of variables, find the new equilibrium temperature T ′ of the Earth.

(g) If n′ = 2n0, find T ′/T0. What is T ′ as an absolute temperature?

As you might expect, this model dramatically exaggerates the real greenhouse effect. The dominant
flaw in this model is that only a few photons will have the proper frequencies to interact strongly with
molecules in the atmosphere. A more realistic model would try and take this into account, among other
things (for example, considering feedback processes in density and interaction strength with temperature,
etc.) but this is far outside the scope of this problem.


