statistical physics \rightarrow random walks and diffusion

Growing Surfaces

How does snowfall cover terrain of varying height? How does sand or dirt poured over some surface settle? These are very simplistic questions, but the answers, for a realistic surface, are a bit subtle. In this question, we will explore the behavior of a surface growing in such a manner.

A simple model of a growing surface is as follows: let $h(x, t)$ be the height of the surface at position x (on some d dimensional terrain) at time t. Then

$$
\frac{\partial h}{\partial t}=u_{0}+\nu \nabla^{2} h+\frac{\lambda}{2}(\nabla h)^{2}
$$

where u_{0}, ν and λ are positive constants. u_{0} is the (presumed constant, in space and time) rate of deposition of new material on the surface. ν represents the tendency of the materials on the surface to diffuse around (reducing the height), and λ represents the fact that particles will tend, after landing, to "roll" down the surface, simply due to gravity.

By setting $h \rightarrow h-u_{0} t$, we can remove the constant term in the equation. (From now on, assume we have done this). The Cole-Hopf transformation

$$
z=\mathrm{e}^{\lambda h / 2 \nu}
$$

helps make the nonlinear PDE manageable.
(a) Show that the Cole-Hopf transformation reduces the nonlinear PDE for h to the diffusion equation.
(b) If the initial height of the surface (e.g., as the snow begins to fall) is $h(x, 0)=h_{0}(x)$, what is the height of the surface at time t ?
(c) Often it is reasonable to take the limit $\nu \rightarrow 0$ (this corresponds to the fact that the particles tend to stay in the same place after they have settled). In this limit, show that

$$
h(x, t) \approx \sup _{x^{\prime}}\left[h_{0}\left(x^{\prime}\right)-\frac{\left(x-x^{\prime}\right)^{2}}{2 \lambda t}\right] .
$$

(d) Describe a simple "graphical" method for sketching the solutions to the above equation. Show how a surface grows for large t, assuming some arbitrary, complicated $h_{0}(x)$.
For a general surface, $h_{0}(x)$ is going to be some extremely complicated function. For many examples in nature, $h_{0}(x)$ will look, roughly speaking, random. One crude way to characterize the randomness is by an exponent χ :

$$
\left\langle\left(h_{0}(x+z)-h_{0}(x)\right)^{2}\right\rangle \sim|z|^{2 \chi} .
$$

where $|z| \gg a$. For mountains, empirically we find $\chi \approx 0.7$, e.g.
(e) This randomness has interesting implications. Show that "information" about the surface spreads as

$$
z \sim t^{1 /(2-\chi)}
$$

where we mean that the surface "knows" about the local maximum of h_{0}, within distances given by z above, at time t. Compare this to the case of simple diffusion.

