statistical physics \rightarrow random walks and diffusion

Random Walks with Shrinking Steps

In this problem, we will consider some cute features of random walks with shrinking steps. In particular, pick a $0<\lambda<1$, and then define

$$
X=\sum_{n=1}^{\infty} \lambda^{n} Z_{n}
$$

for $Z_{n}, n=1,2, \ldots$ iid random variables with $\mathrm{P}\left(Z_{n}= \pm 1\right)=1 / 2$. If we had picked $\lambda=1$ this would be the simple random walk in one dimension. For $\lambda<1$, the random walk has shrinking steps.

Denote with $\mathrm{p}_{\infty}(x)$ the PDF of X as $n \rightarrow \infty$. You may assume that this limit exists for the purposes of this problem.
(a) Show that $\mathrm{p}_{\infty}(x)$ has compact support for any $0<\lambda<1$.
(b) Show that if $\lambda<1 / 2, \mathrm{p}_{\infty}(x)$ has support on a Cantor set. ${ }^{1}$
(c) Now, take $\lambda=1 / 2$. By computing the Fourier transform of the PDF of X after n steps, and then taking the limit $n \rightarrow \infty$, show through clever cancellations that you find a uniform distribution on X at infinite time.

[^0]
[^0]: ${ }^{1}$ Think about the following question: how far can you get from X_{n} at time step $n+1$?

