statistical physics \rightarrow canonical ensemble

The Virial Theorem and Dark Matter

Often times, very simple and elegant theorems in statistical mechanics can have incredibly profound consequences. Here is a lovely example from classical statistical mechanics:

(a) Prove that Z is independent of the choice of coordinates: i.e., if the transformation $q_i \rightarrow q'_i$, $p_i \rightarrow p'_i$ is canonical,

$$Z[H(q'_i, p'_i)] = Z[H(q_i, p_i)].$$

This provides a very elegant proof of the **virial theorem**, a theorem in classical mechanics, for a system in thermal equilibrium. Let the Hamiltonian of a system of interacting non-relativistic particles be

$$H = \sum_{i} \frac{\mathbf{p}_{i}^{2}}{2m_{i}} + V(\mathbf{r}_{i}).$$

The virial theorem states that

$$\left\langle \sum_{i} \frac{\mathbf{p}_{i}^{2}}{m_{i}} \right\rangle = \left\langle \sum_{i} \frac{\partial V}{\partial \mathbf{r}_{i}} \cdot \mathbf{r}_{i} \right\rangle.$$

Classically, the averages were time averages; for us, they are phase space averages in the canonical ensemble. We can call upon an ergodic theorem to justify interchanging the two types of averages, as is usually done.

- (b) Show that the transformation $q'_i = \lambda q_i$, $p'_i = p_i/\lambda$ is canonical.
- (c) Combine parts (a) and (b) to prove the virial theorem.

Now, let's turn to a totally different area of physics. In 1933, Fritz Zwicky was attempting to calculate the mass of the Coma cluster, a galaxy cluster about 10^{24} m away from Earth. He computed this mass in two ways: first, by simply guessing from the size of the galaxy, and second by using the virial theorem. You might find the following facts helpful: when looking at this cluster in a telescope, the observed angular distance from one end to the other is about 10^{-4} radians; the average density of a galaxy is about 10^{-20} kg/m³; the average velocity of a galaxy is 10^6 m/s; Newton's gravitational constant $G \approx 10^{-10}$ J · m/kg². You need only worry about orders of magnitude for the remainder of the problem.

- (d) Estimate the mass of the Coma cluster from its size; then use the virial theorem. Compare your answers; by how many orders of magnitude do they differ?
- (e) Why would the existence of dark matter resolve the discrepancy of part (d)? (Say more than just "because now I can make the two masses equal.")

Modern estimates put the percentage of the universe made up of dark matter at about 80-90%. We still have very little idea as to what makes up dark matter.