statistical physics \rightarrow statistics of radiation

Black Holes

The entropy of a black hole is proportional to its area:

$$S = \frac{1}{4}CA$$

where C is a constant built up only out of $k_{\rm B}$, G, c and \hbar (with no constant coefficients).

- (a) Use dimensional analysis to determine C.
- (b) Assume that the black hole has mass m and is spherical, with radius r. Now, assume that a classical particle is moving at the speed of light, radially outward form the black hole. By using classical Newtonian gravity, determine the maximum radius r for which the particle can escape the presence of the black hole. This is the so-called Schwarzschild radius R. Find an expression for R in terms of m, G and c.
- (c) Does entropy increase or decrease if two black holes collapse into one?¹
- (d) Use $E = mc^2$ to calculate the temperature T of a black hole. Express T as a function of m, or E.
- (e) Assume a black hole emits radiation as a perfect blackbody:

$$\frac{\mathrm{d}E}{\mathrm{d}t} = -\sigma A T^4.$$

Calculate the lifetime τ of a black hole. Assuming that it starts with $m = 10^{30}$ kg (order of magnitude of the mass of the Sun), of what order is τ ?

¹What property of a black hole do you think adds when the 2 black holes merge?