Breaking Bones

In this problem, we will explore the physics which occurs in bone fracture. One "typical" way to imagine breaking a bone is to free fall from some height h through Earth's gravitational field g, and then impact a hard surface. Assume that the hard surface is very thick, and that it will not fracture or in any way behave outside of the elastic regime. We'll want to get a sense of how large a height h is required to break a bone, and why.

Let us collect the relevant material properties for this problem. In the set-up of our problem, the bone you will break is a leg bone, which has a length of about $L \approx 0.5 \mathrm{~m}$, and an effective cross-sectional area of $a \approx 0.02 \mathrm{~m}^{2}$. Bone will fracture when it is subject to stress greater than $\sigma_{\mathrm{c}}=0.15 \mathrm{GPa}$. Suppose that you fall on a hard "rock" surface, with Young's modulus $E \approx 50 \mathrm{GPa}$, and speed of sound $c \approx 1000 \mathrm{~m} / \mathrm{s}$. Finally, suppose that your mass is $m=60 \mathrm{~kg}$, and $g=10 \mathrm{~m} / \mathrm{s}^{2}$, and that the area over which the impact force is spread (your feet) is about $0.1 \mathrm{~m}^{2}$. Do not plug in for these values, until instructed, at the end of the problem.
(a) Suppose you jump from a height h and are in free fall. When you hit the ground, how fast are you going?
(b) Let z be the distance that you fall into the rock, and τ be the time it takes for you to come to rest. Relate z and τ, and then show that the force on your body during impact is (if you approximate it to be constant during deceleration)

$$
F=m g \frac{h}{z}
$$

(c) During the impact time, we can estimate that the rock behaves as a slab of thickness $c \tau$ - this is because the "shock" of your impact can only propagate through the material at the speed of sound. Estimate z by requiring that F be a consequence of Hooke's Law for the elastic solid. ${ }^{1}$
(d) Conclude by finding a formula for the stress in the bone during impact, and then a formula for the maximal height h_{c} at which you can fall without breaking the bone. ${ }^{2}$
(e) Find a formula for the critical height h_{c}. At this height, what are z and τ ? Comment on your answer - are you surprised by the result?
(f) One mechanism that animals use to increase h_{c} is to bend their knees during impact. For a typical fall of $h \sim 1 \mathrm{~m}$, this will increase z to be about 1 cm . What is h_{c} now? Compare to the answer from the previous part.

[^0]
[^0]: ${ }^{1}$ Note this is technically inconsistent, since we required that the force be constant during the fall in part (b). However, accounting for these changes will only lead to an $\mathrm{O}(1)$ correction factor, which we neglect for simplicity.
 ${ }^{2}$ Be sure to account for the fact that the bone has a different cross-sectional area than the feet which make contact with the surface!

