Spherical Battery

A sphere of radius a and constant conductivity σ_{2} is placed in a uniform medium with conductivity σ_{1}. A chemical force \mathbf{F} pushes charge carriers (electrons) upwards in the sphere as shown in the diagram below, such that Ohm's law inside of the sphere becomes $\mathbf{J}=\sigma_{2}(\mathbf{E}+\mathbf{F})$. Assume that $\mathbf{F}=F \hat{\mathbf{z}}$.

(a) By matching boundary conditions on the surface of the sphere, find the electric fields and currents everywhere in space, in terms of $a, F, \sigma_{1}, \sigma_{2}$ and ϵ_{0}.
(b) What is the current I flowing out of the top half of the sphere?

This can be used to crudely model a battery as follows. Let P_{1} be the power dissipated outside of the sphere, and P_{2} be the power dissipated inside of the sphere.
(c) Compute P_{1}; then use the fact that $P_{1}=I V_{1}=I^{2} R_{1}$ to find expressions for V_{1} and R_{1}, the effective external voltage/resistance of the battery.
(d) Compute $P_{2}=I V_{2}=I^{2} R_{2}$ as well. Note that the power density inside the sphere is given by $\mathbf{J} \cdot(\mathbf{E}+\mathbf{F})$.
(e) Find expressions for the total resistance $R=R_{1}+R_{2}$ and the total voltage $V=V_{1}+V_{2}$. Show that $V=4 a F / 3$.

