$electromagnetism \rightarrow electrodynamics$

Spherical Battery

A sphere of radius *a* and constant conductivity σ_2 is placed in a uniform medium with conductivity σ_1 . A chemical force **F** pushes charge carriers (electrons) upwards in the sphere as shown in the diagram below, such that Ohm's law inside of the sphere becomes $\mathbf{J} = \sigma_2(\mathbf{E} + \mathbf{F})$. Assume that $\mathbf{F} = F\hat{\mathbf{z}}$.

- (a) By matching boundary conditions on the surface of the sphere, find the electric fields and currents everywhere in space, in terms of a, F, σ_1, σ_2 and ϵ_0 .
- (b) What is the current I flowing out of the top half of the sphere?

This can be used to crudely model a battery as follows. Let P_1 be the power dissipated outside of the sphere, and P_2 be the power dissipated inside of the sphere.

- (c) Compute P_1 ; then use the fact that $P_1 = IV_1 = I^2R_1$ to find expressions for V_1 and R_1 , the effective external voltage/resistance of the battery.
- (d) Compute $P_2 = IV_2 = I^2R_2$ as well. Note that the power density inside the sphere is given by $\mathbf{J} \cdot (\mathbf{E} + \mathbf{F})$.
- (e) Find expressions for the total resistance $R = R_1 + R_2$ and the total voltage $V = V_1 + V_2$. Show that V = 4aF/3.