Electron on a Tree

Consider the following Hamiltonian for an electron which is allowed to move on a tree:

$$
H=-\mu \sum_{i} c_{i}^{\dagger} c_{i}-\eta \sum_{i, \delta} c_{i}^{\dagger} c_{i+\delta}
$$

where c_{i} is a fermionic annihilation operator on site i, and $i+\delta$ refers to a neighbor site of i. A tree is sketched below, for the example where there are 3 neighbors to each site:

In this problem, we will consider the general case where there are $m \geq 2$ neighbors for each site.
(a) Show that the exact Green's function in the frequency domain for the particle to remain in one place is given by

$$
G(0, \omega)=\frac{\mathrm{i}}{\mathrm{i} \omega+\mu-\frac{2 m \eta^{2}}{\mathrm{i} \omega+\mu+\sqrt{(\mathrm{i} \omega+\mu)^{2}-4(m-1) \eta^{2}}}} .
$$

To do this, you need to be a little bit careful. For the first jump off of the node of interest, there are m possible locations to jump to. For the remaining jumps however, there are only $m-1$ options (since going back does not count when computing the self-energy - why?).
(b) Show that the density of states per site is given by

$$
n(E)=\frac{m \sqrt{4(m-1) \eta^{2}-E^{2}}}{2\left(m^{2} \eta^{2}-E^{2}\right)} \Theta\left(4(m-1) \eta^{2}-E^{2}\right)
$$

(c) Sketch $n(E)$ for $m=2,3$ and 6 , and comment on important differences.

