probability theory $\rightarrow$ stochastic processes

## Cell Growth

Let us consider a simple model for cell growth. We start with a single cell, e.g. a bacterium, at time $t=0$. That cell will split into 2 cells at a constant rate $\alpha$. Then, each of those 2 cells will split into 2 cells with rate $\alpha$, etc. You can think of this as the continuous time version of the birth-death process, e.g.
(a) Let $p_{n}(t)$ be the probability that there are $n$ cells at time $t$. Show that

$$
p_{n}(t)=\mathrm{e}^{-\alpha t}\left(1-\mathrm{e}^{-\alpha t}\right)^{n-1}
$$

The master equation is probably the easiest way to do this.
(b) Find an expression for $\langle n(t)\rangle$, the expected number of cells at time $t$. Is the answer what you'd expect?

