## Supersymmetry and Euler Characteristics

The Euler characteristic of a 2D polygon $P$ can be defined as

$$
\chi(P)=\text { number of vertices }- \text { number of edges }+ \text { number of faces. }
$$

In general, there is a topological definition for the Euler characteristic corresponding to homology groups, but suffice it to say that the Euler characteristic is a very useful topological invariant for a manifold $M$. Some examples are for the 2 -sphere or any ordinary polygon, $\chi=2$, and for the 2 -torus, where $\chi=0$.

In this problem, we will argue that one can obtain the Euler characteristic by a very simple supersymmetric ordinary integral. To do this, we will exploit a result from Morse theory (an area of mathematics) which says that for an arbitrary manifold $M$, if we choose any smooth function $h: M \rightarrow \mathbb{R}$ such that at points when $\partial_{i} h(x)=0, \operatorname{det}\left(\partial_{i} \partial_{j} h\right) \neq 0$, then the Euler characteristic is given by

$$
\chi(M)=\sum_{x: \partial_{i} h(x)=0} \operatorname{sign}\left(\operatorname{det}\left(\partial_{i} \partial_{j} h(x)\right)\right) .
$$

Assume that $h(x)$ has a countable set of extrema. As the formula above suggests, the right hand side is actually independent of the choice of $h$.

Now, how do we do this with a supersymmetric integral. Let $x_{i}$ denote coordinates on $M$, which can be defined at least locally, and define the superfield

$$
X_{i}=x_{i}+\bar{\theta} \psi_{i}+\bar{\psi}_{i} \theta+\frac{1}{2} \bar{\theta} \theta F_{i}
$$

where $\bar{\theta}$ and $\theta$ are scalar Grassmann variables, $x_{i}$ and $F_{i}$ are real vectors, and $\psi_{i}$ is a Grassmann vector. We then define the integral

$$
Z \equiv \int \mathrm{~d} X \exp \left[\int \mathrm{~d}^{2} \theta h(X)\right]
$$

where $h(x)$ is any smooth function satisfying the previous criteria.
(a) Show that $Z=\chi$. Thus as promised, we can compute the topological Euler characteristic with a very simple integral.
(b) To make sense of the mathematical trick, compute the Euler characteristic for the circle, $\mathrm{S}^{1}$. Explicitly prove that it is independent of the choice of $h$.

Interestingly, it turns out that the Euler characteristic can be thought of as a weighted partition function (Witten index) of a supersymmetric nonlinear $\sigma$ model on $M$. Essentially, the way this fact is proven is precisely the computation above, but of course in a more complicated setting.

