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Supersymmetry and Spin Glass Complexity

A typical spin glass is a model with a “mean field” energy functional of a large collection of N spins
E(s1, . . . , sN ) with an exponential number of equilibria where ∂siE = 0.1 We can characterize this by
simply counting the number of solutions at energy density ε = E/N :

n(ε) ≡
∑
α

δ(Eα −Nε).

Here each α labels an equilibrium of the energy E.
The reason there are typically an exponential number of equilibria to E is that we actually think of

E as a random variable, drawn from a probability distribution of disorder: for example, we may place
random magnetic fields on each spin site. Spin glasses have the remarkable property that they self-average,
and almost always the macroscopic behavior is only dependent on the distribution of the disorder, and
not on the specific realization. Thus, to talk about the glass we can average over this disorder. In this
spirit, let us define another variable, called the spin glass complexity, by

exp[NΣ(ε)] ≡ 〈n(ε)〉disorder.

As in usual statistical mechanics, we learn things about spin glasses through studying the partition
function. At low temperatures (inverse temperature is β) we may approximate the partition function as

Z ≈
∑
α

e−βEα .

(a) Use a saddle point approximation on Z, averaging over disorder,2 to show that

1

β
=
∂Σ(ε∗)

∂ε
,

f = ε∗ − Σ(ε∗)

β
.

Here f is the free energy per site, averaged over the disorder, and ε∗ is the self-averaged average
energy per site – it is by far the most likely energy we would see on a given realization of the spin
glass. Comment on these results – their form should look familiar, although they are appearing in a
slightly different context.

Now, where does supersymmetry come in to this picture? We can also count states by a supersym-
metric “path” integral. I’ll get you started: consider the integral

n(ε) =
∑
α

∫
dsi δ(si − si,α)δ(Eα −Nε).

Here si,α is the value of spin si in equilibrium α.

1Our function E is often referred to as the TAP free energy.
2Actually, we almost always want to average over the disorder on the free energy, not the partition function. This is a

subtlety which you don’t need to worry about in this problem. You will see the interesting physics regardless.



(b) Show that

n(ε) =

∫
dsidλidµdcidci exp

[
iµ(E(s)−Nε) + iλi

∂E(s)

∂si
+ cicj

∂2E(s)

∂si∂sj

]
where ci, ci are Grassmann variables, and λi and µ are real.

(c) Show that the integral of part (b) has a BRST supersymmetry.

(d) Find an operator whose BRST variation provides the Ward identity

0 = 〈siλj + cjci〉

and be sure to note over what probability distribution we are averaging over.

(e) Argue that, if hj corresponds to a magnetic field on site j, the result of part (d) leads to

d〈si〉
dhj

∣∣∣∣
hj=0

=

〈(
∂2E(s)

∂si∂sj

)−1
〉

which is the static fluctuation-dissipation theorem.

We have shown above how the static fluctuation-dissipation theorem, which relates energy curvature
to the response of the system under external perturbations, can be thought of as a trivial Ward identity
from a supersymmetric path integral. But the story gets a bit weird now. Another feature of spin glasses
is that the spectrum of the equilibria is very sensitive to external parameters. In particular, as we tune
up a magnetic field hj , we may destroy and create new equilibria so fast that what we mean by the
distribution we averaged over in parts (d-e) changes between 0 and dhj . In particular, this can mean
that, roughly speaking:

d〈si〉
dhj

∣∣∣∣
hj=0

6=
〈

dsi
dhj

〉∣∣∣∣
hj=0

=

〈(
∂2E(s)

∂si∂sj

)−1
〉

This violation of the BRST Ward identity must thus be interpreted as spontaneous supersymmetry breaking
in the state-counting integral. This is a bit more than just a theoretical conjecture – there is substantial
evidence that this in fact happens for some famous spin glass models.


