topology and geometry \rightarrow symplectic geometry

Hermitian Matrices and Symplectic Manifolds

Let \mathcal{H} be the set of $n \times n$ Hermitian matrices. There is a natural action on \mathcal{H} of U(n) given by conjugation: for $R \in \mathcal{H}$ and $V \in U(n)$:

$$R \to URU^{-1}$$
.

Let us denote by $\mathcal{H}_{(\lambda_1,\ldots,\lambda_n)}$ the subspace of \mathcal{H} consisting of matrices whose eigenvalues are $\lambda_1,\ldots,\lambda_n$. We will usually just denote this space by \mathcal{H}_{λ} , for simplicity. Note that we may have multiplicities, e.g. $\lambda_1 = \lambda_2$. In this problem, we will show that \mathcal{H}_{λ} are symplectic manifolds, and explore some interesting consequences of this.

- (a) Show that the orbits of the conjugation action on \mathcal{H} are the \mathcal{H}_{λ} .
- (b) Note that $i\mathcal{H} = u(n)$. For $R \in \mathcal{H}_{\lambda}$, let us define a 2 form, acting on a pair of vectors $X, Y \in u(n)$:

$$\omega_R(X, Y) = \operatorname{itr}([X, Y]R).$$

Show that $\operatorname{Ker}(\omega_R)$ corresponds to the Lie algebra of the stabilizer of \mathcal{H}_{λ} under the U(n) action. What is this Lie algebra, explicitly?

- (c) Show that $(\mathcal{H}_{\lambda}, \omega_R)$ is a symplectic manifold.
- (d) Suppose that $\lambda_1 \neq \lambda_2 \neq \cdots \neq \lambda_n$. Describe the orbit \mathcal{H}_{λ} by giving a simple geometric picture. Is the space the same for all λ ?
- (e) Show that if $\lambda_1 = a$ and $\lambda_i = b \neq a$, for all $i \neq 1$, then the orbit $\mathcal{H}_{\lambda} = \mathbb{C}P^{n-1}$. This provides a rather direct proof that $\mathbb{C}P^{n-1}$ is a symplectic manifold.