topology and geometry \rightarrow manifolds

Stiefel Manifolds

The Stiefel manifold $V_m(\mathbb{R}^n)$ is defined as the set of all ordered pairs of m orthonormal vectors in \mathbb{R}^n : in symbols, that means

$$V_m(\mathbb{R}^n) \equiv \{ (e_1, \dots, e_m) \in \mathbb{R}^n : e_i \cdot e_j = \delta_{ij} \}.$$

Note that you can think of (e_1, \ldots, e_m) as a matrix in $\mathbb{R}^{n \times m}$: this is sometimes a convenient way to think of points in the manifold.

- (a) Show that $V_1(\mathbb{R}^n) = S^{n-1}$. Thus, Stiefel manifolds are, in a sense, generalizations of spheres.
- (b) Show that SO(n) acts transitively on $V_m(\mathbb{R}^n)$.
- (c) Find the isotropy group of any point in $V_m(\mathbb{R}^n)$.
- (d) Conclude that $V_m(\mathbb{R}^n) = \mathrm{SO}(n)/\mathrm{SO}(n-m)$.
- (e) What is $\dim(V_m(\mathbb{R}^n))$?