The Homology of U(2)

The Lie group $\mathrm{U}(2)$ can be defined in terms of matrices in $\mathbb{C}^{2 \times 2}$:

$$
\mathrm{U}(2) \equiv\left\{A \in \mathbb{C}^{2 \times 2}: A^{\dagger} A=1\right\}
$$

The goal of this problem will be to compute the homology groups for this Lie group. In general, this is a very challenging task, but for this group in particular it will be doable!

We'll first need to show the following preliminary results.
(a) Show that, for some $x_{0} \in \mathrm{~S}^{n}$,

$$
\mathrm{H}_{i}\left(X \times \mathrm{S}^{n}\right)=\mathrm{H}_{i}(X) \oplus \mathrm{H}_{i}\left(X \times \mathrm{S}^{n}, X \times\left\{x_{0}\right\}\right)
$$

(b) Show that

$$
\mathrm{H}_{i}\left(X \times \mathrm{S}^{n}, X \times\left\{x_{0}\right\}\right) \cong \mathrm{H}_{i-1}\left(X \times \mathrm{S}^{n-1}, X \times\left\{x_{0}\right\}\right)
$$

(c) Conclude that, if we take $\mathrm{H}_{j}(X)=0$ for $j<0$:

$$
\mathrm{H}_{i}\left(X \times \mathrm{S}^{n}\right) \cong \mathrm{H}_{i}(X) \oplus \mathrm{H}_{i-n}(X)
$$

Now, let's turn to $\mathrm{U}(2)$.
(d) Show that $\mathrm{U}(2)=\mathrm{SU}(2) \times \mathrm{S}^{1}$, where

$$
\mathrm{SU}(2) \equiv\{A \in \mathrm{U}(2): \operatorname{det}(A)=1\} .
$$

(e) Construct an explicit homeomorphism between $\mathrm{SU}(2)$ and S^{3}.
(f) Using the previous parts, find the homology groups of $\mathrm{U}(2)$.

