
statistical physics → thermodynamics FFFF

Strangelet Matter

One of the (incredibly unlikely) doomsday scenarios about colliders such as the RHIC heavy ion collider
is the possible formation of strangelet matter: a giant ball of strangelet matter, which is proposed to be
thermodynamically preferred to normal matter, could then suck up all matter on Earth, ending life on
the planet.

Strangelet matter is essentially a soup of up, down and strange quarks and electrons that may be a
preferred thermodynamic phase to our normal state of nuclear matter, which consists of normal protons
and neutrons. The main idea is that, although strange quarks are very heavy, in a large quark soup, it is
preferable to have strange quarks because the Pauli exclusion principle means that these quarks can be
at lower momenta. We will explore this possibility in a simple quantitative model, in this problem.

Let us begin with a brief overview of the relevant nuclear physics. We will be dealing with electrons,
which can exist in 2 distinct spin states. Quarks are also spin-1/2 particles with 2 spin states – in addition,
they can also exist in 3 different color states. For this problem, we will set ~ = c = 1, so masses, energies
and momenta are all measured in the same units, which we’ll take to be MeV. We denote the mass of the
strange quark with m. The masses of electrons (e), up quarks (u) and down quarks (d) are very small
in comparison, and we will take them to be approximately 0. If the electric charge of the electron is −e,
then the electric charge of u is 2e/3, and the charges of d and s are −e/3.

Now, we turn to strangelet matter. Define the chemical potentials for our 4 species as µe,u,d,s (labels
are self-evident). To first approximation, let us just treat the strangelet matter as consisting of 4 Fermi
gases of non-interacting particles. For each species of particle, we can define a grand thermodynamic
potential density ω:

ω ≡ ε− µn,

where n is the number density of the species, and ε is the energy density.
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The last expression is exact, but find asymptotic expressions for it when µ� m, and when µ−m� m.

(b) The bulk system must have no net electric charge, and in addition we would like the following
reactions1 to be in equilibrium:

d
 u + e,

s
 u + e,

d + u
 s + u.

1For simplicity, we have ignored the neutrions present in these reactions, as they will not be treated in our thermodynamic
approximation.



Conclude that there is only one independent chemical potential – let us choose to pick µs ≡ µ as our
lone chemical potential for the remainder of the problem.

(c) Study the number densities of each of the 4 species in the asymptotic regimes identified above, and
comment on the results.

(d) For the system to be in mechanical equilibrium with the vacuum, the pressure of the strangelet matter
must be equal to the vacuum pressure – 0. Suppose that there is an energy density of B associated
with the vacuum of strangelet matter – this is related to the confining interactions between quarks.
Conclude that

0 = B + ωe + ωu + ωd + ωs,

and therefore that B > 0. Estimate the value of B associated to the strangelet phase in the asymptotic
regimes of µ.

(e) Now, we need to check the energy per baryon, h ≡ ε/(nu + nd + ns): if h > 940 MeV, which is the
energy of a nucleon, then strange matter will be unstable to the emission of nucleons. Using m ≈ 100
MeV, determine numerically the allowed range of B for which strangelet matter is stable.

(f) Now, consider the energy per baryon of non-strange matter, where there are no strange quarks, and
instead a simple quark soup of u, d and e. In this case, determine numerically the value of B for
which the energy per baryon is less than 930 MeV – in this regime, this simple quark matter is also
stable. Show that there is a parameter regime in B for which only the strangelet matter is stable.

So far, no strangelet matter has been observed experimentally. In this problem, we have neglected
quantum corrections to ωs, but it is possible in the so-called strong coupling limit that the electric
charge due to d and s alone could make the strangelet matter negatively charged – then, positrons would
compensate for the overall charge density. If this happened, then ordinary atoms would be attracted to
the negatively charged object and become absorbed into it. This is essentially the doomsday scenario
behind strangelet matter.


