continuum mechanics \rightarrow wave propagation

Jeans Instability

A non-viscous fluid fills the interstellar medium. In equilibrium the fluid has a speed of sound c and a mass density ρ_0 . Now, assume a slight perturbation to this static configuration, and assume that the perturbations in the fluid density create gravitational fields through Newtonian gravitation.

- (a) Write down the Poisson equation for the gravitational potential φ , as well the dynamical wave equation for the fluid (what would be a convenient variable to work with?).
- (b) Show that the dispersion relation for sound waves is modified to

$$\omega^2 = c^2 k^2 - 4\pi G \rho_0.$$

- (c) Given $G \approx 7 \times 10^{-11} \text{ N/kg}^2 \cdot \text{s}^2$, $\rho_0 \approx 10^{-21} \text{ kg/m}^3$ and $c \approx 400 \text{ m/s}$ for interstellar dust, find the critical value of k_c at which an instability occurs. This instability is called the **Jeans instability**.
- (d) Do you think any interstellar structures could be formed by the Jeans instability?¹

¹For relevant length scales from astronomy, Wikipedia will be a good source!