continuum mechanics \rightarrow surface phenomena

Kelvin Waves

A line vortex has radius a, such that the velocity field for $r \ge a$ is

$$\mathbf{v}_0 = \frac{\gamma}{2\pi s} \hat{\boldsymbol{\phi}}.$$

Now, suppose we allow the boundary of the core to vibrate slightly, so that the radius is given by $a + a_1$, where $|a_1| \ll a$. Let the perturbations to pressure and velocity potential be P_1 and φ_1 .

(a) Show that, to first order, the boundary conditions at r = a become

$$\frac{\partial a_1}{\partial t} + \frac{\gamma}{2\pi a^2} \frac{\partial a_1}{\partial \phi} = -\frac{\partial \varphi_1}{\partial r},$$
$$\frac{\partial \varphi_1}{\partial t} + \frac{\gamma}{2\pi a^2} \frac{\partial \varphi_1}{\partial \phi} = -\frac{\gamma^2}{4\pi^2 a^3} a_1.$$

(b) Show that if φ_1 and a_1 go like $e^{i(m\phi+kz-\omega t)}$,

$$\omega(k) = \frac{\kappa}{2\pi a^2} \left(m \pm \sqrt{g_m(ka)}\right)$$

where the function $g_m(x)$ is defined as

$$g_m(x) = -\frac{x \mathbf{K}_{|m|}(x)}{\mathrm{d}\mathbf{K}_{|m|}(x)/\mathrm{d}x}$$

(c) Let m = -1. Draw/describe the motion of the core, and show that

$$\omega(k) \approx \frac{\gamma}{4\pi} \left[0.116 - \log(ka) \right] k^2.$$