continuum mechanics \rightarrow surface phenomena

Rayleigh-Taylor Instability

A fluid of mass density ρ_2 extends in equilibrium for z > 0, and one of mass density ρ_1 extends for z < 0. Both are assumed to be inviscid and incompressible. Suppose that waves of the form $e^{i(k_x x + k_y y - \omega t)}$ are propagating through both fluids, displacing the boundary between the fluids to $\zeta(x, y, t)$. (Assume ζ is "small").

(a) Surface tension at the boundary can be described by

$$\Delta P = \gamma \left(\frac{1}{R_1} + \frac{1}{R_2} \right).$$

Show that for small ζ , the above equation is equivalent to

$$\Delta P = -\gamma k^2 \zeta \delta(z)$$

where $k^2 = k_x^2 + k_y^2$.

(b) Using conservation of mass and momentum, show that the dispersion relation for surface waves along the boundary is

$$\omega^{2} = \frac{k(\gamma k^{2} - g(\rho_{2} - \rho_{1}))}{\rho_{2} + \rho_{1}}.$$

- (c) In what regimes is there instability? Give a physical justification for the answer.
- (d) When an instability exists, find the largest rate of growth of an instability.